Kontakt

Direktor

Prof. Dr. Konstantin Pankrashkin

+49 (0)441 798-3215

W1 2-208

Geschäftsstelle

Sekretariat

+49 (0)441 798-3004

Antje Hagen

+49 (0)441 798-3247

W1 1-115

Frauke Wehber

+49 (0)441 798-3247

W1 1-115

Desislava Deutsch

+49 (0)441 798-3241

W1 1-120

Gleichstellungsbeauftragte

Carolin Lena Danzer

+49 (0)441 798-3227

W1 1-104

Dr. Birte Julia Specht

+49 (0)441 798-3607

W1 1-110

Dr. Sandra Stein

+49 (0)441 798-3237

W1 2-214

Ombudsperson für Fragen der
Diskriminierung und der sexuellen Belästigung

Antje Hagen

+49 (0)441 798-3247

W1 1-115

IT-Beauftragte

Veronika Viets

+49 (0) 441 798-3236

W1 1-116

Anschrift

Carl von Ossietzky Universität Oldenburg
Institut für Mathematik
Carl-von-Ossietzky-Str. 9-11
26129 Oldenburg

Anreise

Abschlussseminare

The isomorphism of the scattering algebra

Oldenburg, den 11.06.2024

 

Vortragsankündigung

 

Im Rahmen des Oberseminars Analysis/Numerik spricht

 

Herr Dr. Alessandro Pietro Contini (Hannover)

über

The isomorphism of the scattering algebra

 

Der Vortrag findet statt am Donnerstag, 13.06.2024 von 14.30 bis 15.30 Uhr im Raum W01 0-006

 

Abstract:

In this talk, based on my PhD thesis, I will start by setting up the framework of the socalled scattering calculus {\Psi}^{{a}{s}{t},{a}{s}{t}}{\left\lbrace{s}{c}\right\rbrace}{\left({X}\right)}. This is calculus of pseudo-differential operators on a manifold which looks like a cone near its boundary \partial{X}, metrically speaking Euclidian at infinity. Two of the main features of this algebra are: there is second filtration measuring the loss of decay near the boundary, and full ellipticity is captured by a joint principal symbol map, which, in contrast to other algebras, is fully commutative and therefore an algebra of functions of a compact manifold. Given another manifold with the same structure near the boundary, I will study the problem of classifying all the isomorphisms {\Psi}^{{a}{s}{t},{a}{s}{t}}{\left\lbrace{s}{c}\right\rbrace}{\left({X}\right)}\rightarrow{\Psi}^{{a}{s}{t},{a}{s}{t}}_{\left\lbrace{s}{c}\right\rbrace}{\left({Y}\right)} which map operators of order {\left({m},{l}\right)} on {X} to operators of order{\left({m},{l}\right)} on {Y} . Following ideas of Duistermaat and Singer, I will show how this can be interpreted as the problem of quantising a symplectomorphism to a Fourier Integral Operator and proceed to characterise (on flat space) the isomorphisms as conjugation with such an object.

 

Interessierte sind herzlich eingeladen.

 

Fakultät V

Mathematik und Naturwissenschaften

13.06.2024 14:30 – 15:30

(Stand: 13.08.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page