Kontakt

Institutsdirektor

Prof. Dr. Christian Schneider

Geschäftsstelle

Personen

+49 (0)441 798-3572

+49 (0)441 798-3699

Anschrift

Carl von Ossietzky Universität Oldenburg
Fakultät V - Mathematik und Naturwissenschaften
Institut für Physik
Ammerländer Heerstr. 114-118
26129 Oldenburg

Lageplan mit Routenplaner

Impressum

Vorträge

  iCal

  • Im Vordergrund ist die geöffnete Kuppel eines Teleskops zu sehen, im Hintergrund der noch leicht rötlich leuchtende Abendhimmel, auf dem gleichzeitig schon die Milchstraße in voller Pracht zu sehen ist.

    Das Artemis-Teleskop auf Teneriffa ist Teil eines Projekts, um Planeten in fremden Sonnensystemen genauer zu untersuchen. Jetzt trug es dazu, kleine Asteroiden in unserem eigenen Sonnensystem aufzuspüren. Daniel Pádron

  • Aufnahme durch die geöffnete Kuppel der Sternwarte ins Innere, wo Tobias Hoffmann und das Teleskop zu sehen sind. Im Hintergrund das Universitätsgebäude in Wechloy.

    Der Physikstudent Tobias Hoffmann (hier mit dem Oldenburger Teleskop GHOST) entwickelte in seiner Masterarbeit eine Methode, um die Größenbestimmung von Asteroiden zu verbessern. Universität Oldenburg / Daniel Schmidt

  • Grafische Darstellung: Das Weltraumteleskop schwebt über dem Erdball, dessen infrarote Strahlung als rotes Leuchten angedeutet ist. Im Weltall befinden sich einige wenige größere Asteroiden und dazwischen viele kleinere, die rötlich leuchten und damit heller sind als die großen Asteroiden.

    Das James Webb-Weltraumteleskop ist besonders empfindlich für infrarotes Licht. Mit einer neu entwickelten Methode werden selbst sehr kleine Asteroiden im weit entfernten Asteroidengürtel sichtbar. Ella Maru und Julien de Wit

Extrem kleine Asteroiden im Hauptgürtel entdeckt

Asteroiden, die nur so groß sind wie ein Bus und zwischen Mars und Jupiter herumschwirren: Solche Himmelskörper hat ein internationales Team kürzlich erstmals aufgespürt. An der Studie war auch ein Oldenburger Student beteiligt.  

Asteroiden, die nur so groß sind wie ein Bus und zwischen Mars und Jupiter herumschwirren: Solche Himmelskörper hat ein internationales Team kürzlich erstmals aufspüren können. An der Veröffentlichung im Fachjournal Nature war auch ein Oldenburger Student beteiligt. 

Zwischen den Planeten Mars und Jupiter kreisen Millionen von Asteroiden im sogenannten Hauptgürtel. Bislang hatten die kleinsten Himmelskörper, die Forschende dort ausmachen konnten, einen Durchmesser von etwa einem Kilometer. Jetzt hat ein internationales Team unter Leitung des Massachusetts Institute of Technology (MIT) in den USA einen Weg gefunden, deutlich kleinere Objekte aufzuspüren. Mit ihrem neuen Ansatz wiesen die Forschenden mehr als hundert zuvor unbekannte Asteroiden mit einem Durchmesser zwischen 10 Metern und mehreren hundert Metern nach. An der Arbeit, die heute in der Fachzeitschrift Nature erschienen ist, war auch der Masterstudent Tobias Hoffmann aus der Abteilung Medizinische Strahlenphysik und Weltraumumgebung der Universität Oldenburg beteiligt. Das Team geht davon aus, dass die neue Methode nützlich sein kann, um Asteroiden zu identifizieren, die der Erde potenziell gefährlich werden können.

„Bislang konnten wir Asteroiden in der Größenordnung von zehn Metern nur erkennen, wenn sie sehr nahe an der Erde vorbeiflogen“, sagt der Hauptautor der Studie, Dr. Artem Burdanov vom MIT. „Jetzt haben wir die Möglichkeit, solche kleinen Asteroiden auch in viel größeren Entfernungen zu erkennen.“ Das sei für den Schutz der Erde vor Einschlägen von entscheidender Bedeutung, da mögliche Gefahren früher entdeckt werden könnten.

Zu den Koautoren der Studie gehören Prof. Dr. Julien de Wit und Prof. Dr. Richard Binzel vom MIT, Forschende weiterer US-Institutionen sowie Astronominnen und Astronomen aus Tschechien, Belgien, Italien und Frankreich. Aus Deutschland waren neben Hoffmann, der mittlerweile ein Traineeprogramm bei der Europäischen Weltraumorganisation ESA absolviert, auch Forschende des Max-Planck-Instituts für extraterrestrische Physik in Garching und des Max-Planck-Instituts für Astronomie in Heidelberg beteiligt.

Größenmessung von Asteroiden verbessert

Der Oldenburger Physiker steuerte eine verbesserte Methode zur Größenmessungen von Asteroiden bei, die er in seiner Masterarbeit bei Prof. Dr. Björn Poppe entwickelt hatte. Das Verfahren beseitigt systematische Abweichungen bei Helligkeitsmessungen, die Größenbestimmungen von Asteroiden bislang verzerrt hatten. Durch den Vergleich mit bereits bekannten Objekten, deren Größe er in seiner Arbeit genau ermittelt hatte, war es möglich, auch die Durchmesser der neuen Objekte zu überprüfen. Hoffmann stellte das Verfahren kürzlich in einem separaten Artikel in der Zeitschrift Icarus vor. „Wir sind sehr stolz darauf, dass die Arbeiten von Tobias Hoffmann auf so hohem Niveau zum Einsatz kommen und Anerkennung finden“, betont Poppe.  

Der Nachweis der kleinen Asteroiden im Asteroidengürtel war für de Wit und sein Team quasi ein Nebenprodukt ihrer eigentlichen Arbeit. Die MIT-Forschenden konzentrieren sich in erster Linie auf die Erforschung von Exoplaneten, also Planeten außerhalb unseres Sonnensystems. Bei der Suche nach diesen fremden Welten müssen die Forschenden die Aufnahmen von Teleskopen häufig von störenden Signalen befreien, die etwa durch Gas, Staub oder größere Objekten verursacht werden, die sich zwischen der Erde und dem Exoplaneten befinden. Zu dem „Rauschen“, das aussortiert wird, gehören auch vorbeiziehende Asteroiden.

„Für die meisten Astronomen sind Asteroiden eher lästig, da sie die Daten beeinträchtigen“, sagt de Wit. Er und Burdanov fingen jedoch bereits vor einigen Jahren an, ihre Daten auch für die Suche nach Asteroiden in unserem eigenen Sonnensystem zu verwenden. Dazu bedienten sie sich einer Bildverarbeitungstechnik, die erstmals in den 1990er-Jahren entwickelt wurde. Bei diesem sogenannten Shift-and-Stack-Verfahren (englisch: verschieben und stapeln) werden mehrere Bilder, die dasselbe Sichtfeld zeigen, verschoben und übereinandergelegt. Koppelt man dies mit modernen Computeralgorithmen zur Suche von beweglichen Objekten in den Bilddaten, werden kleine Himmelskörper sichtbar, die ansonsten im Rauschen untergehen.

Leichter zu erkennen mit dem Weltraumteleskop James Webb

In ihrer neuen Studie nutzten die Forschenden Daten des weltweit leistungsstärksten Observatoriums, des James-Webb-Weltraumteleskops (JWST), das besonders empfindlich für Infrarotlicht ist. Ziel war es, insbesondere nach kleineren Asteroiden zu suchen. Da Asteroiden im infraroten Bereich heller leuchten als im sichtbaren Bereich des Spektrums, sind sie mit dem JWST leichter zu erkennen als mit optischen Teleskopen.

Das Team wandte seinen Ansatz auf JWST-Aufnahmen des Sterns TRAPPIST-1 an, der 40 Lichtjahre von der Erde entfernt ist und dessen Planetensystem de Wit erforscht. Die Daten – rund 10.000 Bilder des Sterns – wurden ursprünglich aufgenommen, um nach Anzeichen dafür zu suchen, dass die inneren Planeten des Systems eine Atmosphäre besitzen. Nun analysierten die Forschenden sie erneut mit dem Shift-and-Stack-Verfahren, um nach Objekten in unserem eigenen Sonnensystem zu suchen, die im Vordergrund der Bilder vorbeifliegen. Auf diese Weise fanden sie zunächst acht bereits bekannte Asteroiden. Eine weitere Analyse förderte 138 neue Asteroiden zu Tage, viele mit einem Durchmesser zwischen zehn und hundert Metern. Es handelt sich um die kleinsten Asteroiden des Hauptgürtels, die bisher entdeckt wurden. Das Team vermutet, dass die Bahnen einiger dieser Asteroiden instabil sind und sie demnächst in der näheren Umgebung der Erde auftauchen könnten. Bei einem anderen Objekt handelt es sich wahrscheinlich um einen sogenannten Trojaner – einen Asteroiden, der auf der gleichen Bahn um die Sonne kreist wie der Planet Jupiter.

„Wir haben viel mehr neue Objekte entdeckt als erwartet, vor allem kleine Asteroiden“, sagt de Wit. Das sei ein Zeichen dafür, dass die Forschenden Zugang zu einem ganz neuen Teil der Asteroidenpopulation erhalten hätten. Das Team nimmt an, dass die kleinen Objekte durch Kaskaden von Kollisionen entstehen, die Asteroiden mit einer Größe von weniger als etwa hundert Metern in viele kleinere Fragmente zertrümmern.

Die Arbeit wurde zum Teil von der Heising-Simons Foundation, der Czech Science Foundation und dem NVIDIA Academic Hardware Grant Program unterstützt.

Webmaster (Stand: 20.06.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page