Vortragsankündigung
Im Rahmen des Oberseminars Analysis/Numerik spricht
Herr Dr. Rares Stan
(Mathematics Institute of the Romanian Academy/ Univ Göttingen)
über
Title: The Selberg zeta function on degenerating hyperbolic surfaces on degenerating hyperbolic surfaces
Abstract:
We investigate the spectrum of the spin Dirac operator on families of hyperbolic surfaces where a set of disjoint simple geodesics shrink to 0, under the hypothesis that the spin structure is non-trivial along each pinched geodesic. The main tool is a trace formula for the Dirac operator on finite area hyperbolic surfaces. As a corollary we find a simultaneous Weyl law for the eigenvalues of the Dirac operator which is uniform in the degenerating parameter. The main result is the convergence of the Selberg zeta function associated to the Dirac operator on such families of hyperbolic surfaces. We shall also discuss how this result can be generalized to the case of hyperbolic manifolds of dimension 3.
Der Vortrag findet statt am
Donnerstag, den 12.12.2024 um 14.15 Uhr – 15.15 Uhr im Raum W01 0-006
Interessierte sind herzlich eingeladen.