Kontakt

Direktor

Prof. Dr. Konstantin Pankrashkin

+49 (0)441 798-3215

W1 2-208

Geschäftsstelle

Sekretariat

+49 (0)441 798-3004

Antje Hagen

+49 (0)441 798-3247

W1 1-115

Frauke Wehber

+49 (0)441 798-3247

W1 1-115

Desislava Deutsch

+49 (0)441 798-3241

W1 1-120

Gleichstellungsbeauftragte

Carolin Lena Danzer

+49 (0)441 798-3227

W1 1-104

Dr. Birte Julia Specht

+49 (0)441 798-3607

W1 1-110

Dr. Sandra Stein

+49 (0)441 798-3237

W1 2-214

Ombudsperson für Fragen der
Diskriminierung und der sexuellen Belästigung

Antje Hagen

+49 (0)441 798-3247

W1 1-115

IT-Beauftragte

Veronika Viets

+49 (0) 441 798-3236

W1 1-116

Anschrift

Carl von Ossietzky Universität Oldenburg
Institut für Mathematik
Carl-von-Ossietzky-Str. 9-11
26129 Oldenburg

Anreise

Prof. Dr. Alexey Chernov

Institut für Mathematik
Carl von Ossietzky Universität Oldenburg
D-26111 Oldenburg

Tel.: +49-441-798 3944
(Sekr.: -3247, Fax: -3004)
alexey.chernov@uni-oldenburg.de 

Büro: Campus Oldenburg-Wechloy,
Carl von Ossietzky Straße, W1 2-223

Sprechstunde: nach Vereinbarung

Forschungsinteressen / Research Interests

My research interests are in the fields of Numerical Analysis and Scientific Computing, in particular:

  • Numerical methods for uncertainty quantification in problems with random parameters
  • Finite Element Methods, high-order and spectral FEM
  • Boundary Element Methods, discretization of nonlocal operators
  • Numerical integration
  • Numerical methods for high-dimensional problems
  • Numerical methods for contact and obstacle problems

Forschungsgruppe / Research Group

Current members

PhD student

since 10/2017 Nick Wulbusch, Topic: "Numerical methods for parametric PDE models in time-harmonic acoustics"

Postdoctoral research fellow

since 03/2024 Tùng Lê, Topic: "Parametric regularity for nonlinear partial differential equations"

Alumni

Postdoctoral research fellows

10/2020 – 07/2022 Erik M. Schetzke, Topic: "Numerical methods for covariance functions of elliptic problems under uncertainty"
05/2010 – 10/2013 Duong T. Pham, Topic: "Sparse spectral approximation for pseudodifferential operators"
10/2008 – 02/2009 Kersten Schmidt, Topic: "High order transmission conditions for thin conducting sheets"

PhD students

04/2017 – 03/2024 Tùng Lê, Topic: "Parametric regularity for nonlinear partial differential equations" (defended at the University of Oldenburg in March 2024)
10/2014 – 09/2020 Erik M. Schetzke, Topic: "Numerical methods for covariance functions of elliptic problems under uncertainty" (defended at the University of Oldenburg in September 2020)
10/2015 – 02/2018 Lorenzo Mascotto, Topic: "High order Virtual Element Methods"
  (defended at the Università degli Studi di Milano Statale and the University of Oldenburg in February 2018)
02/2012 – 03/2016 Claudio Bierig, Topic: "Approximation of Central Moments and Probability Density
  Functions by MLMC with Application to Stochastic Variational Inequalities"
  (defended at the University of Oldenburg in March 2016)
02/2012 – 08/2015 Anne Reinarz, Topic: "Sparse space-time Boundary Element Methods for the heat
  equation" (defended at the University of Reading, UK in August 2015)

 

Collaborators

Publikationen / Publications

Preprints

  1. A. Chernov and T. Lê, Analytic and Gevrey class regularity for parametric elliptic eigenvalue problems and applications, SIAM J. Numer. Anal. (2024), accepted, Preprint

  2. N. Wulbusch, R. Roden, M. Blau and A. Chernov, Bayesian parameter identification in impedance boundary conditions for Helmholtz problems, SIAM J. Sci. Comput (2024), accepted, Preprint

Peer-reviewed Publications

  1. A. Chernov and T. Lê, Analytic and Gevrey class regularity for parametric semilinear reaction-diffusion problems and applications in uncertainty quantification, Comput. Math. Appl., 164 (2024), 116–130, DOI: 10.1016/j.camwa.2024.04.007, Preprint

  2. A. Chernov and E. M. Schetzke, A simple, bias-free approximation of covariance functions by the multilevel Monte Carlo method having nearly optimal complexity, SIAM/ASA J. Uncertain. Quantif., 11 (2023), no. 3, 941–969, DOI: 10.1137/22M1506845, Preprint

  3. N. Wulbusch, R. Roden, A. Chernov and M. Blau, Using a one-dimensional finite-element approximation of Webster's horn equation to estimate individual ear canal acoustic transfer from input impedances, J. Acoust. Soc. Am., 153 (2023), no. 5, 2826–2837, DOI: 10.1121/10.0019378, Preprint

  4. A. Chernov, C. Marcati and L. Mascotto, p- and hp-virtual elements for the Stokes problem, Adv. Comput. Math., 47 (2021), no. 2, Paper No. 24, 31 pp., DOI: 10.1007/s10444-020-09831-w, Preprint

  5. A. Chernov, H. Hoel, K. Law, F. Nobile and R. Tempone, Multilevel ensemble Kalman filtering for spatio-temporal processes, Numer. Math. 147 (2021), no. 1, 71–125, DOI: 10.1007/s00211-020-01159-3, Preprint

  6. F. Schöpfer and A. Chernov, Certified efficient global roundness evaluation, J. Optim. Theory Appl., 186 (2020), no.1, 169–190, DOI: 10.1007/s10957-020-01689-8

  7. D. T. Pham, T. Tran, D. Dũng and A. Chernov, Exterior Dirichlet and Neumann problems in domains with random boundaries, Bull. Malays. Math. Sci. Soc., 43 (2020), no. 2, 1311–1342, DOI: 10.1007/s40840-019-00741-9

  8. A. Chernov and A. Reinarz, Sparse grid approximation spaces for space-time boundary integral formulations of the heat equation, Comput. Math. Appl., 78 (2019), no. 11, 3605–3619, DOI: 10.1016/j.camwa.2019.06.036, Preprint

  9. A. Chernov and L. Mascotto, The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains, IMA J. Numer. Anal., 39 (2019), no. 4, 1787–1817, DOI: 10.1093/imanum/dry038, Preprint

  10. L. Beirão da Veiga, A. Chernov, L. Mascotto and A. Russo, Exponential convergence of the hp virtual element method in presence of corner singularities, Numer. Math. 138 (2018), no. 3, 581–613, DOI: 10.1007/s00211-017-0921-7, Preprint

  11. L. Beirão da Veiga, A. Chernov, L. Mascotto and A. Russo, Basic principles of hp Virtual Elements on quasiuniform meshes, Math. Models Methods Appl. Sci. 26 (2016), no. 8, 1567–1598, DOI: 10.1142/S021820251650038X, Preprint

  12. C. Bierig and A. Chernov, Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method, J. Comput. Physics 314 (2016), 661–681, DOI: 10.1016/j.jcp.2016.03.027, Preprint

    A supplimentary MATLAB package is available here

  13. C. Bierig and A. Chernov, Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo Method, Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 1, 3–40, DOI: 10.1007/s40072-015-0063-9, Preprint

  14. A. Chernov and D. Dũng, New explicit-in-dimension estimates for the cardinality of high-dimensional hyperbolic crosses and approximation of functions having mixed smoothness, J. Complexity 32 (2016), no.1, 92–121, DOI: 10.1016/j.jco.2015.09.001, Preprint

  15. A. Chernov, T. von Petersdorff, and C. Schwab, Quadrature algorithms for high-dimensional singular integrands on simplices, Numer. Algorithms 70 (2015), no. 4, 847–874, DOI: 10.1007/s11075-015-9977-6, Preprint

    The supplimentary Netlib package na39 (peer-reviewed) is avaliable at www.netlib.org/numeralgo

  16. A. Chernov, D. Pham and T. Tran, A shape calculus based method for a transmission problem with random interface, Comput. Math. Appl. 70 (2015), no. 7, 1401–1424, DOI: 10.1016/j.camwa.2015.06.021, Preprint

  17. C. Bierig and A. Chernov, Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems, Numer. Math. 130 (2015), no. 4, 579–613, DOI: 10.1007/s00211-014-0676-3, Preprint

  18. A. Chernov and D. Pham, Sparse spectral BEM for elliptic problems with random input data on a spheroid, Adv. Comput. Math. 41 (2015), no. 1, 77–104, DOI: 10.1007/s10444-014-9350-7, Preprint

  19. K. Schmidt and A. Chernov, Robust transmission conditions of high order for thin conducting sheets in two dimensions, IEEE Trans. Magn. 50 (2014), no. 2, 41–44, DOI: 10.1109/TMAG.2013.2285437, Preprint

  20. A. Chernov and A. Reinarz, Numerical quadrature for high-dimensional singular integrals over parallelotopes, Comput. Math. Appl. 66 (2013), no. 7, 1213–1231

  21. A. Chernov and C. Schwab, First order k-th moment Finite Element analysis of nonlinear operator equations with stochastic data, Math. Comp. 82 (2013), no. 284, 1859–1888

  22. K. Schmidt and A. Chernov, A unified analysis of transmission conditions for thin conducting sheets in the time-harmonic eddy current model, SIAM J. Appl. Math. 73 (2013), no. 6, 1980–2003

  23. A. Chernov and C. Schwab, Sparse space-time Galerkin BEM for the nonstationary heat equation, ZAMM Z. Angew. Math. Mech. 93 (2013), no. 6–7, 403–413

  24. A. Chernov, Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex, Math. Comp. 81 (2012), no. 278, 765–787

  25. A. Chernov and C. Schwab, Exponential convergence of Gauss-Jacobi quadratures for singular integrals over high dimensional simplices, SIAM J. Numer. Anal. 50 (2012), no. 3, 1433–1455

  26. A. Chernov, Sparse polynomial approximation in positive order Sobolev spaces with bounded mixed derivatives and applications to elliptic problems with random loading, Appl. Numer. Math. 62 (2012), no. 4, 360–377

  27. D. T. Pham, T. Tran, and A. Chernov, Pseudodifferential equations on the sphere with spherical splines, Math. Models Methods Appl. Sci. 21 (2011), no. 9, 1933–1959

  28. A. Chernov, T. von Petersdorff, and C. Schwab, Exponential convergence of hp quadrature for integral operators with gevrey kernels, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 3, 387–422

  29. A. Chernov and P. Hansbo, An hp-Nitsche’s method for interface problems with nonconforming unstructured finite element meshes, Vol. 76 of Lecture Notes in Computational Science and Engineering, pp. 153–162, Springer, 2011.

  30. A. Chernov and C. Schwab, Sparse p-version BEM for first kind boundary integral equations with random loading, Appl. Numer. Math. 59 (2009), no. 11, 2698–2712

  31. A. Chernov, Abstract sensitivity analysis for nonlinear equations and applications, in: Numerical Mathematics and Advanced Applications, ENUMATH 2007, pp. 407–414, Springer, Berlin, Heidelberg, 2008.

  32. A. Chernov, M. Maischak, and E.P. Stephan, hp-mortar boundary element method for two-body contact problems with friction, Math. Methods Appl. Sci. 31 (2008), no. 17, 2029–2054

  33. A. Chernov, M. Maischak, and E.P. Stephan, A priori error estimates for hp penalty BEM for contact problems in elasticity, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37–40, 3871–3880

  34. A. Chernov and E.P. Stephan, Adaptive BEM for Contact Problems with Friction, in IUTAM Symposium on Computational Methods in Contact Mechanics, Vol. 3 of IUTAM Bookser., pp. 113–122, Springer, Dordrecht, 2007

  35. A. Chernov, S. Geyn, M. Maischak, and E. P. Stephan, Finite element/boundary element coupling for two-body elastoplastic contact problems with friction, in: Analysis and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics, Vol. 27, pp. 171–178, Springer, Berlin, Heidelberg, 2006, P. Wriggers, U. Nackenhorst (Eds.)

Publications in conference proceedings

  1. A. Chernov and A. Reinarz, Sparse grid approximation spaces for space-time boundary integral formulations of the heat equation, Oberwolfach Report 06/2022 ''Space-Time Methods for Time-Dependent Partial Differential Equations'', 320-322, DOI: 10.14760/OWR-2022-6

  2. C. Bierig, A. Chernov and E. M. Schetzke, Multilevel Monte Carlo approximation of moments, covariance functions and the maximum entropy reconstruction, Oberwolfach Report 12/2019 ''Uncertainty Quantification'', 714–717, DOI: 10.14760/OWR-2019-12

  3. K. Schmidt and A. Chernov, Robust transmission conditions of high-order for thin conducting sheets, proceeding of WAVES 2011, Vancouver, Canada, pp. 691–694

  4. A. Chernov and C. Schwab, Efficient solution of elliptic BIEs with random loading or on a random boundary, Oberwolfach Report 19/2008 ''Analysis of Boundary Element Methods'', 958–961, DOI: 10.14760/OWR-2008-19

  5. A. Chernov, p-Sparse BEM for weakly singular integral equation with random data, proceedings of ICIAM 2007, Zurich, Switzerland, 16–20 July 2007

  6. A. Chernov and E. P. Stephan, Adaptive hp-version of mortar BEM for two-body contact problems in elasticity. DtN and Uzawa algorithms, proceedings of IABEM 2006, Graz, Austria, 10–12 July 2006

  7. A. Chernov, M. Maischak and E. P. Stephan, hp-mortar boundary element method and FE/BE coupling for multibody contact problems with friction, proceedings of ECCM 2006, Lisbon, Portugal, 5–9 June 2006

  8. A. Chernov and A. Koldoba, Propagation of the gasless burning wave. Numerical and Mathematical Modeling, proceedings of scientific conference ''Lomonosov Readings'' Moscow, Russia, April 2003

  9. A. Chernov and A. Koldoba, Thermal-diffusive instability of the deflagration front, proceedings of XIV Conference ''Theoretical Basis and Construction of Numerical Algorithms for Problems of Mathematical Physics'', Durso, Russia, September 2002

Other publications

  1. A. Chernov, A. Debussche and F. Nobile, Numerical methods for random and stochastic partial differential equations, Editorial preface, Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 1, 1–2, DOI: 10.1007/s40072-016-0073-2

  2. A. Chernov and F. Nobile, Numerical methods for uncertainty quantification, Editorial preface, Int. J. Uncertain. Quantif. 5 (2015), no. 3, vi–vii, DOI: 10.1615/Int.J.UncertaintyQuantification.2015014190

  3. A. Chernov and C. Schwab, High-order finite element approximation for partial differential equations, Editorial preface, Comput. Math. Appl. 67 (2014), no. 4, 709–711, DOI: 10.1016/j.camwa.2014.01.012

  4. A. Chernov, Nonconforming boundary elements and finite elements for interface and contact problems with friction – hp-version for mortar, penalty and Nitsche's methods, PhD Thesis, University of Hannover, 2006

Software

  1. Implementation of the Maximum Entropy method by matching generalized moments is available here. An earlier version of this program have been used for numerical experiments published in the paper:

    C. Bierig and A. Chernov, Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method, J. Comput. Physics 314 (2016), 661–681, DOI: 10.1016/j.jcp.2016.03.027, Preprint

  2. Netlib package na39 (peer-reviewed), avaliable at www.netlib.org/numeralgo. This is a supplementary program package for the paper:

    A. Chernov, T. von Petersdorff, and C. Schwab, Quadrature algorithms for high-dimensional singular integrands on simplices, Numer. Algorithms 70 (2015), no. 4, 847–874, DOI: 10.1007/s11075-015-9977-6, Preprint

Kurzer Lebenslauf / Curriculum Vitae

since 04/2023 Member of Senate, University of Oldenburg
since 10/2023 Oldenburg representative, Deutscher Hochschulverband
04/2019 – 03/2021 Vice Dean (Prodekan) of the School of Mathematics and Science, University of Oldenburg
04/2017 – 03/2019 Director of the Institute for Mathematics, Univ. Oldenburg (Vice Director 04/2019–03/2021)
09/2015 – 08/2018 Vice-Chair of the GAMM Activity Group on Uncertainty Quantification
since 04/2015 Full Professor (W3), Institute for Mathematics, University of Oldenburg, Germany
09/2013 – 03/2015 Associate Professor, Dep. of Mathematics and Statistics, University of Reading, UK
10/2008 – 08/2013 Professor (W2), Hausdorff Center for Mathematics, University of Bonn, Germany
10/2006 – 09/2008 Postdoc, Seminar for Applied Mathematics, ETH Zurich, Switzerland
10/2003 – 09/2006 PhD, Institute for Applied Mathematics, University of Hannover, Germany
09/1998 – 06/2003 Student, Depart. of Mechanics and Mathematics, Moscow State University, Russia
Webmaster (Stand: 13.08.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page