Adiabatisch-diabatisches Folgen von Floquetzuständen
H.P. Breuer, K. Dietz, M. Holthaus: The role of avoided crossings in the dynamics of strong laser field-matter interactions Z. Phys. D 8, 349-357 (1988).
H.P. Breuer, K. Dietz, M. Holthaus: Strong laser fields interacting with matter Z. Phys. D 10, 13-26 (1988).
H.P. Breuer, M. Holthaus: Adjabatic processes in the ionization of highly excited hydrogen atoms Z. Phys. D 11, 1-14 (1989).
H.P. Breuer, K. Dietz, M. Holthaus: Low-frequency ionisation of excited hydrogen atoms: The Floquet picture J. Phys. B 22, 3187-3196 (1989).
H.P. Breuer, M. Holthaus: Quantum phases and Landau-Zener transitions in oscillating fields Phys. Lett. A 140, 507-512 (1989).
H.P. Breuer, K. Dietz, M. Holthaus: Adjabatic motion and the structure of quasienergy surfaces of periodically driven quantum systems Nuovo Cimento 105 B, 53-63 (1990).
H.P. Breuer, K. Dietz, M. Holthaus: Transport of quantum states of periodically driven systems J. Phys. France 51, 709-722 (1990).
H.P. Breuer, K. Dietz, M. Holthaus: Adiabatic evolution, quantum phases, and Landau-Zener transitions in strong radiation fields Radiation Effects and Defects in Solids 122-123, 91-106 (1991). (Proceedings of the First International Conference on Coherent Radiation Processes in Strong Fields, Washington, D.C., June 18-22, 1990; edited by V.L. Jacobs, R. Fusina, A.W. Saenz, and H. Überall.)
H.P. Breuer, K. Dietz, M. Holthaus: Highly excited hydrogen atoms in strong microwave fields Z. Phys. D 18, 239-248 (1991).
H.P. Breuer, M. Holthaus: Excitation mechanisms for hydrogen atoms in strong microwave fields J. Phys. II 1, 437-449 (1991).
H.P. Breuer, K. Dietz, M. Holthaus: Selective excitation of molecular vibrations by interference of Floquet states J. Phys. B 24, 1343-1357 (1991).
H.P. Breuer, K. Dietz, M. Holthaus: Selective excitation of the HF molecule: continuum and pulse shape effects Phys. Rev. A 45 (Brief Report), 550-552 (1992).
M. Holthaus: Pulse-shape-controlled tunneling in a laser field Phys. Rev Lett. 69, 1596-1599 (1992).
H.P. Breuer, K. Dietz, M. Holthaus: Berry's phase in quantum optics Phys. Rev. A 47 (Brief Report), 725-728 (1993).
H.P. Breuer, M. Holthaus: Adiabatic control of molecular excitation and tunneling by short laser pulses J. Phys Chem. 97, 12634-12643 (1993).
M. Holthaus, B. Just: Generalized π pulses Phys. Rev. A 49, 1950-1960 (1994).
M. Holthaus: A nonperturbative mechanism for fast, selective excitation of molecular states in: Femtosecond Chemistry (J. Manz and L. Wöste, eds.), Vol 2, 713-730 (Verlag Chemie, Weinheim, 1995).
K. Drese, M. Holthaus: Perturbative and nonperturbative processes in adiabatic population transfer Eur. Phys. J. D 3, 73-86 (1998).
K. Drese, M. Holthaus: Floquet theory for short laser pulses Eur. Phys. J. D 5, 119-134 (1999).
H. P. Breuer, M. Holthaus: A semiclassical theory of quasienergies and Floquet wave functions Ann. Phys. (N.Y.) 211, 249-291 (1991).
J. Henkel, M. Holthaus: Classical resonances in quantum mechanics Phys. Rev. A 45, 1978-1986 (1992).
K. Dietz, J. Henkel, M. Holthaus: Transitions induced by separatrix crossing Phys. Rev. A 45, 4960-4968 (1992).
M. Holthaus: Strongly driven semiconductor quantum wells: New testing ground for ”quantum chaos”? Prog. Theor. Phys. (Suppl.) 116, 417-423 (1994). (Proceedings of the Yukawa International Seminar Quantum and Chaos: How Incompatible?, Kansai Seminar House, Kyoto, August 24-28, 1993.)
M. Holthaus, M.E. Flatté: Subharmonic generation in quantum systems Phys. Lett. A 187, 151-156 (1994).
M. Holthaus: On the classical-quantum correspondence for periodically time dependent systems Chaos, Solitons, & Fractals 5 (Special issue: Quantum Chaos: Present and Future), 1143-1167 (1995).
M.E. Flatté, M. Holthaus: Classical and quantum dynamics of a periodically forced particle in a triangular well Ann. Phys. (N.Y.) 245, 113-146 (1996).
Teilchen in periodisch angetriebenen Gittern
M. Holthaus: Collapse of minibands in far-infrared irradiated superlattices Phys. Rev. Lett. 69, 351-354 (1992).
M. Holthaus: Collapse of minibands in far-infrared irradiated superlattices Phys. Rev. Lett. 69, 351-354 (1992)
M. Holthaus, D. Hone: Quantum wells and superlattices in strong time dependent fields Phys. Rev. B 47, 6499-6508 (1993).
D. W. Hone, M. Holthaus: Locally disordered lattices in strong ac electric fields Phys. Rev. B II 48, 15123-15131 (1993).
M. Holthaus, D.W. Hone: ac Stark effects and harmonic generation in periodic potentials Phys. Rev. B 49, 16605-16608 (1994).
M. Holthaus, G.H. Ristow, D.W. Hone: ac-field-controlled Anderson localization in disordered semiconductor superlattices Phys. Rev. Lett. 75, 3914-3917 (1995).
M. Holthaus, G.H. Ristow, D.W. Hone: Random lattices in combined ac and dc electric fields: Anderson vs. Wannier-Stark localization Europhys. Lett. 32, 241-246 (1995).
M. Holthaus, D.W. Hone: Localization effects in ac-driven tight binding lattices Phil. Mag. B 74, 105-137 (1996).
K. Drese, M. Holthaus: Anderson localization in an ac-driven two-band model J. Phys.: Condens. Matter 8, 1193-1206 (1996).
K. Drese, M. Holthaus: Ultracold atoms in modulated standing light waves Chem. Phys. 217, (Special issue: Dynamics of Driven Quantum Systems), 201-219 (1997).
K. Drese, M. Holthaus: Exploring a metal-insulator transition with ultracold atoms in standing light waves? Phys. Rev. Lett. 78, 2932-2935 (1997).
M. Holthaus: Zwischen Quantenoptik und Festkörperphysik: Lokalisierungskontrolle durch periodischen Antrieb Physikal. Blätter 54, 643-646 (1998). (Festvortrag anlässlich der Verleihung des Gustav-Hertz-Preises auf der 62.~Physiker-tagung in Regensburg.)
M. Holthaus: Coherent control of quantum localization in: Coherent Control in Atoms, Molecules, and Semiconductors (W. Pötz and W. A. Schröder, eds.), 171-182 (Kluwer, Dordrecht, 1999). (Proceedings of an International Workshop held in Chicago, USA, May 19-22, 1998.)
S. Arlinghaus, M. Langemeyer, M. Holthaus: Dynamic localization in optical lattices in: Dynamical Tunneling -- Theory and Experiment (S. Keshavamurthy and P. Schlagheck, eds.) 289-310 (Taylor and Francis CRC, 2011)
S. Arlinghaus, M. Holthaus: Driven optical lattices as strong-field simulators Phys. Rev. A 81, 063612 (2010). [4 Seiten]
S. Arlinghaus, M. Holthaus: Generalized acceleration theorem for spatiotemporal Bloch waves Phys. Rev. B 84, 054301 (2011). [11 Seiten]
S. Arlinghaus, M. Holthaus: Controlled wave packet manipulation with driven optical lattices Phys. Rev. A 84, 063617 (2011). [10 Seiten]
S. Arlinghaus, M. Holthaus: ac Stark shift and multiphotonlike resonances in low-frequency-driven optical lattices Phys. Rev. A 85, 063601 (2012). [4 Seiten]
M. Holthaus: Tutorial: Floquet engineering with quasienergy bands of periodically driven optical lattices J. Phys. B 49, 013001 (2016). [26 Seiten]
Periodisch angetriebene Vielteilchensysteme
M. Holthaus: Towards coherent control of a Bose-Einstein condensate in a double well Phys. Rev. A 64, 011601 (Rapid Communication), (2001). [4 Seiten]
M Holthaus, S. Stenholm: Coherent control of the self-trapping transition Eur. Phys. J. B 20, 451-467 (2001).
T Jinasundera, C. Weiss, M. Holthaus: Many-particle tunnelling in a driven Bosonic Josephson junction Chem. Phys. 322 (Special issue: Real-time Dynamics of Complex Quantum Systems), 118-126 (2006).
A. Eckardt, T. Jinasundera, C. Weiss, M. Holthaus: Analog of photon-assisted tunneling in a Bose-Einstein condensate Phys. Rev. Lett. 95, 200401 (2005). [4 Seiten]
A. Eckardt, C. Weiss, M. Holthaus: Superfluid-insulator transition in a periodically driven optical lattice Phys. Rev. Lett. 95, 260404 (2005). [4 Seiten]
N. Teichmann, C. Weiss, M. Holthaus: From many-body interaction to nonlinearity Nonlinear Phenomena in Complex Systems 9, 254-264 (2006).
A. Eckardt, M. Holthaus: Dressed matter waves Journal of Physics: Conference Series 99, 012007 (2008). [14 Seiten]
A. Eckardt, M. Holthaus: Avoided-level-crossing spectroscopy with dressed matter waves Phys. Rev. Lett. 101, 245302 (2008). [4 Seiten]
A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo: Exploring dynamic localization with a Bose-Einstein condensate Phys. Rev. A 79, 013611 (2009). [7 Seiten] [Siehe auch die Synopse in Physics --- spotlighting exceptional research, Januar 2009]
E. Arimondo, D. Ciampini, A. Eckardt, M. Holthaus, O. Morsch: Kilohertz-driven Bose-Einstein condensates in optical lattices Adv. At. Mol. Opt. Phys. 61, 515--547 (2012).
B. Gertjerenken, M. Holthaus: Trojan quasiparticles New J. Phys. 16, 093009 (2014). [17 Seiten]
B. Gertjerenken, M. Holthaus: Fluctuations of the order parameter of a mesoscopic Floquet condensate Phys. Rev. A 90, 053614 (2014). [5 Seiten]
B. Gertjerenken, M. Holthaus: Quasiparticle tunneling in a periodically driven bosonic Josephson junction Phys. Rev. A 90, 053622 (2014). [7 Seiten]
B. Gertjerenken, M. Holthaus: Emergence and destruction of macroscopic wave functions EPL 111, 30006 (2015). [6 Seiten]
B. Gertjerenken, M. Holthaus: N-coherence vs.\ t-coherence: An alternative route to the Gross-Pitaevskii equation Annals of Physics 362, 482-510 (2015).
C. Heinisch, M. Holthaus: Adiabatic preparation of Floquet condensates J. Mod. Opt. 63 (Special issue: 20 years of Bose-Einstein Condensates: Current trends and applications of ultracold quantum gases), 1768-1776 (2016).
C. Heinisch, M. Holthaus: Entropy production within a pulsed Bose-Einstein condensate Z. Naturforsch. A 71 (Focus section: Emergence in driven solid-state and cold-atom systems), 875-881 (2016).
N. Krüger, M. Holthaus: Following Floquet states in high-dimensional Hilbert spaces Phys. Rev. Research 3, 043133 (2021). [10 Seiten]
Periodische Thermodynamik
M. Langemeyer, M. Holthaus: Energy flow in periodic thermodynamics Phys. Rev. E 89, 012101 (2014). [10 Seiten]
H.-J. Schmidt, J. Schnack, M. Holthaus: Floquet theory of the analytical solution of a periodically driven two-level system Applicable Analysis 100, 992-1009 (2021; early access July 2019).
H.-J. Schmidt, J. Schnack, M. Holthaus: Periodic thermodynamics of the Rabi model with circular polarization for arbitrary spin quantum numbers Phys. Rev. E 100, 042141 (2019). [17 Seiten]
O. R. Diermann, M. Holthaus: Floquet-state cooling Sci. Rep. 9, 17614 (2019). [7 Seiten]
O. R. Diermann, H. Frerichs, M. Holthaus: Periodic thermodynamics of the parametrically driven harmonic oscillator Phys. Rev. E 100, 012102 (2019). [12 Seiten]
O. R. Diermann, H.-J. Schmidt, J. Schnack, M. Holthaus: Environment-controlled Floquet-state paramagnetism Phys. Rev. Research 2, 023293 (2020). [7 Seiten]
Energiedissipation in turbulenten Scherströmungen
Th. Gebhardt, S. Grossmann, M. Holthaus, M. Löhden: Rigorous bounds on the plane-shear-flow dissipation rate Phys. Rev. E 51, 360-365 (1995).
R. Nicodemus, S. Grossmann, M. Holthaus: Improved variational principle for bounds on energy dissipation in turbulent shear flow Physica D 101, 178-190 (1997).
R. Nicodemus, S. Grossmann, M. Holthaus: Variational bound on energy dissipation in turbulent shear flow Phys. Rev. Lett. 79, 4170-4173 (1997).
R. Nicodemus, S. Grossmann, M. Holthaus: Variational bound on energy dissipation in plane Couette flow Phys. Rev. E 56, 6774-6786 (1997).
R. Nicodemus, S. Grossmann, M. Holthaus: The background flow method. Part 1. Constructive approach to bounds on energy dissipation J. Fluid Mech. 363, 281-300 (1998).
R. Nicodemus, S. Grossmann, M. Holthaus: The background flow method. Part 2. Asymptotic theory of dissipation bounds J. Fluid Mech. 363, 301-323 (1998).
R. Nicodemus, S. Grossmann, M. Holthaus: Towards lowering dissipation bounds for turbulent flows Eur. Phys. J. B 10, 385-396 (1999).
Bose-Einstein-Kondensation
S. Grossmann, M. Holthaus: Bose-Einstein condensation in a cavity Z. Phys. B 97, 319-326 (1995).
S. Grossmann, M. Holthaus: Bose-Einstein condensation and condensate tunneling Z. Naturforsch. 50a, 323-326 (1995).
S. Grossmann, M. Holthaus: Das neue Gesicht der Bose-Einstein-Kondensation Physikal. Blätter 51, 923 (1995) [Erratum: 51, 1108 (1995)].
S. Grossmann, M. Holthaus: On Bose-Einstein condensation in harmonic traps Phys. Lett. A 208, 188-192 (1995).
S. Grossmann, M. Holthaus: λ-transition to the Bose-Einstein condensate Z. Naturforsch. 50a, 921-930 (1995).
S. Grossmann, M. Holthaus: Microcanonical fluctuations of a Bose system's ground state occupation number Phys. Rev. E 54, 3495-3498 (1996).
S. Grossmann, M. Holthaus: Fluctuations of the particle number in a trapped Bose-Einstein condensate Phys. Rev. Lett. 79, 3557-3560 (1997).
S. Grossmann, M. Holthaus: Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps Optics Express 1, 262-271 (1997).
M. Holthaus, E. Kalinowski, K. Kirsten: Condensate fluctuations in trapped Bose gases: Canonical vs. microcanonical ensemble Ann. Phys. (N.Y.) 270, 198-230 (1998).
S. Grossmann, M. Holthaus: From number theory to statistical mechanics: Bose-Einstein condensation in isolated traps Chaos, Solitons, & Fractals 10, 795-804 (1999). (Proceedings of the 178th Heraeus-Seminar Pattern formation in nonlinear optical systems, Bad Honnef, June 23-25, 1997.)
M. Holthaus, E. Kalinowski: Universal renormalization of saddle-point integrals for condensed Bose gases Phys. Rev. E 60, 6534-6537 (1999).
M. Holthaus, E. Kalinowski: The saddle-point method for condensed Bose gases Ann. Phys. (N.Y.) 276, 321-360 (1999).
M. Holthaus, K. T. Kapale, V. V. Kocharovsky, M. O. Scully: Master equation vs. partition function: Canonical statistics of ideal Bose-Einstein condensates Physica A 300, 433-467 (2001).
M. Holthaus, K. T. Kapale, M. O. Scully: Influence of boundary conditions on statistical properties of ideal Bose-Einstein condensates Phys. Rev. E 65, 036129 (2002). [5 Seiten]
C. Weiss, M. Holthaus: Asymptotics of the number partitioning distribution Europhys. Lett. 59, 486-492 (2002).
D. Boers, M. Holthaus: Canonical statistics of occupation numbers for ideal and weakly interacting Bose-Einstein condensates in: Dynamics and Thermodynamics of Systems with Long-Range Interactions (T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, eds.), Lecture Notes in Physics Vol. 602, 332-368 (Springer, Berlin Heidelberg 2002). (Lecture notes of a conference held at the centre de physique in Les Houches, France, February 18-22, 2002.)
C. Weiss, M. Block, M. Holthaus, G. Schmieder: Cumulants of partitions J. Phys. A: Math. Gen. 36, 1827-1844 (2003).
C. Weiss, M. Block, D. Boers, A. Eckardt, M. Holthaus: Ground-state energy of a weakly interacting Bose gas: Calculation without regularization Z. Naturforsch. 59a, 1-13 (2004).
C. Weiss, S. Page, M. Holthaus: Factorising numbers with a Bose-Einstein condensate Physica A 341, 586-606 (2004).
A. Eckardt, C. Weiss, M. Holthaus: Ground-state energy and depletions for a dilute binary Bose gas Phys. Rev. A 70, 043615 (2004). [10 Seiten]
D. Boers, C. Weiss, M. Holthaus: Bogoliubov speed of sound for a dilute Bose-Einstein condensate in a 3d optical lattice Europhys. Lett.\ 67, 887-892 (2004).
C. Weiss, S.-A. Biehs, A. Eckardt, M. Holthaus: Weakly interacting Bose gas: The role of residual interactions Laser Physics 15, 626-635 (2005).
V. V. Kocharovsky, Vl. V. Kocharovsky, M. Holthaus, C. H. Raymond Ooi, A. Svidzinsky, W. Ketterle, M. O. Scully: Fluctuations in Ideal and Interacting Bose-Einstein Condensates: From the laser phase transition analogy to squeezed states and Bogoliubov quasiparticles Adv. At. Mol. Opt. Phys. 53, 291-411 (2006).
Nahfeld-Wärmetransfer
M. Janowicz, D. Reddig, M. Holthaus: Quantum approach to electromagnetic energy transfer between two dielectric bodies Phys. Rev. A 68, 043823 (2003). [17 Seiten]
A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, M. Holthaus: Near-field heat transfer in a scanning thermal microscope Phys. Rev. Lett. 95, 224301 (2005). [4 Seiten]
S.-A. Biehs, D. Reddig, M. Holthaus: Thermal radiation and near field energy density of thin metallic films Eur. Phys. J. B 55, 237-251 (2007).
D. Grieser, H. Uecker, S.-A. Biehs, O. Huth, F. Rüting, M. Holthaus: Perturbation theory for plasmonic eigenvalues Phys. Rev. B 80, 245405 (2009). [8 Seiten] [Aufgenommen in die Ausgabe des Virtual Journal of Nanoscale Science & Technology vom 21. Dezember 2009]
O. Huth, F. Rüting, S.-A. Biehs, M. Holthaus: Shape-dependence of near-field heat transfer between a spheroidal nanoparticle and a flat surface Eur. Phys. J. Appl. Phys. 50, 10603 (2010). [9 Seiten]
S.-A. Biehs, O. Huth, F. Rüting, M. Holthaus: Spheroidal nanoparticles as thermal near-field sensors J. Appl. Phys. 108, 014312 (2010). [5 Seiten]
F. Rüting, S.-A. Biehs, O. Huth, M. Holthaus: Second-order calculation of the local density of states above a nanostructured surface Phys. Rev. B 82, 115443 (2010). [10 Seiten]
A. Kittel, D. Hellmann, L. Worbes, M. Holthaus: Das Nahfeld-Rasterwärmemikroskop Phys. Unserer Zeit 42, 10-11 (2011).
Metall-Isolator-Übergang im Bose-Hubbard-Modell
N. Teichmann, D. Hinrichs, M. Holthaus, A. Eckardt: Bose-Hubbard phase diagram with arbitrary integer filling Phys. Rev. B 79, 100503(R) (2009). [4 Seiten] [Aufgenommen in die Ausgabe des Virtual Journal of Applications of Superconductivity vom 15. März 2009]
N. Teichmann, D. Hinrichs, M. Holthaus, A. Eckardt: Process-chain approach to the Bose-Hubbard model: Ground-state properties and phase diagram Phys. Rev. B 79, 224515 (2009). [14 Seiten] [Aufgenommen in die Ausgabe des Virtual Journal of Atomic Quantum Fluids vom Juli 2009]
N. Teichmann, D. Hinrichs, M. Holthaus: Reference data for phase diagrams of triangular and hexagonal bosonic lattices EPL 91, 10004 (2010). [6 Seiten]
D. Hinrichs, A. Pelster, M. Holthaus: Perturbative calculation of critical exponents for the Bose-Hubbard model Appl. Phys. B 113 (Special issue: Selected papers presented at the 2012 Spring Meeting of the Quantum Optics and Photonics section of the German Physical Society), 57-67 (2013).
S. Sanders, C. Heinisch, M. Holthaus: Hypergeometric analytic continuation of the strong-coupling perturbation series for the 2d~Bose-Hubbard model EPL 111, 20002 (2015). [6 Seiten]
S. Sanders, M. Holthaus: Hypergeometric continuation of divergent perturbation series: I. Critical exponents of the Bose-Hubbard model New J. Phys. 19, 103036 (2017). [10 Seiten]
S. Sanders, M. Holthaus: Hypergeometric continuation of divergent perturbation series: II. Comparison with Shanks transformation and Padé approximation J. Phys. A: Math. Theor. 50, 465302 (2017). [24 Seiten]
S. Sanders, M. Holthaus: Quantum critical properties of Bose-Hubbard models J. Phys. A: Math. Theor. 52, 255001 (2019). [11 Seiten]
Sonstiges
H.P. Breuer, K. Dietz, M. Holthaus, Th. Millack: On the quantum field theory of photoionisation and electron scattering reactions on atoms Z. Phys. D 7, 9-21 (1987).
H.P. Breuer, K. Dietz, M. Holthaus: On the classical dynamics of strongly driven anharmonic oscillators Physica D 46, 317-341 (1990).
H.P. Breuer, K. Dietz, M. Holthaus: A remark on the Kramers-Henneberger transformation Phys. Lett. A 165, 341-346 (1992).
M. Holthaus, C.S. Kenney, A.J. Laub: Numerical methods for studying parameter dependence of solutions to Schrödinger's equation in: Differential Equations, Dynamical Systems, and Control Science: A Festschrift in Honor of Lawrence Markus (K.D. Elworthy, W.N. Everitt, and E.B. Lee, eds.), Lecture Notes in Pure and Applied Mathematics 152, 101-114 (Marcel Dekker, New York, 1993).
K. Drese, M. Holthaus: Phase diagram for a modified Harper model Phys. Rev. B 55, R14693-R14696 (1997).
M. Holthaus: Bloch oscillations and Zener breakdown in an optical lattice J. Opt. B: Quantum Semiclass. Opt. 2, 589-604 (2000).
M. Block, M. Holthaus: Pseudopotential approximation in a harmonic trap Phys. Rev. A 65, 052102 (2002). [4 Seiten]
J. Pade, M. Block, M. Holthaus: s-wave pseudopotential for anisotropic traps Phys. Rev. A 68, 063402 (2003). [6 Seiten]
D. J. Boers, B. Goedeke, D. Hinrichs, M. Holthaus: Mobility edges in bichromatic optical lattices Phys. Rev. A 75, 063404 (2007). [6 Seiten]
M. Janowicz, M. Holthaus: Sub- and superluminal kink-like waves in the kinetic limit of Maxwell-Bloch equations J. Phys. A: Math. Theor. 44, 025301 (2011). [13 Seiten]
Publikationen, die von online-Datenbanken erfasst werden