Martin Holthaus

Martin Holthaus

Institut für Physik  (» Postanschrift)

W02 3-350, Carl-von-Ossietzky-Str. 9 - 11 (» Adresse und Lageplan )

Mo 14 - 16 Uhr und nach den Vorlesungen

+49 441 798-3960  (F&P

+49 441 798-3080

Forschungsfelder

Adiabatisch-diabatisches Folgen von Floquetzuständen

  • H.P. Breuer, K. Dietz, M. Holthaus:
    The role of avoided crossings in the dynamics of strong laser field-matter interactions
    Z. Phys. D 8, 349-357 (1988).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Strong laser fields interacting with matter
    Z. Phys. D 10, 13-26 (1988).
     
  • H.P. Breuer, M. Holthaus:
    Adjabatic processes in the ionization of highly excited hydrogen atoms
    Z. Phys. D 11, 1-14 (1989).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Low-frequency ionisation of excited hydrogen atoms: The Floquet picture
    J. Phys. B 22, 3187-3196 (1989).
     
  • H.P. Breuer, M. Holthaus:
    Quantum phases and Landau-Zener transitions in oscillating fields
    Phys. Lett. A 140, 507-512 (1989).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Adjabatic motion and the structure of quasienergy surfaces of periodically driven quantum systems
    Nuovo Cimento 105 B, 53-63 (1990).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Transport of quantum states of periodically driven systems
    J. Phys. France 51, 709-722 (1990).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Adiabatic evolution, quantum phases, and Landau-Zener transitions in strong radiation fields
    Radiation Effects and Defects in Solids 122-123, 91-106 (1991).
    (Proceedings of the First International Conference on Coherent Radiation Processes in Strong Fields, Washington, D.C., June 18-22, 1990; edited by V.L. Jacobs, R. Fusina, A.W. Saenz, and H. Überall.)
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Highly excited hydrogen atoms in strong microwave fields
    Z. Phys. D 18, 239-248 (1991).
     
  • H.P. Breuer, M. Holthaus:
    Excitation mechanisms for hydrogen atoms in strong microwave fields
    J. Phys. II 1, 437-449 (1991).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Selective excitation of molecular vibrations by interference of Floquet states
    J. Phys. B 24, 1343-1357 (1991).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Selective excitation of the HF molecule: continuum and pulse shape effects
    Phys. Rev. A 45 (Brief Report), 550-552 (1992).
     
  • M. Holthaus:
    Pulse-shape-controlled tunneling in a laser field
    Phys. Rev Lett. 69, 1596-1599 (1992).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    Berry's phase in quantum optics
    Phys. Rev. A 47 (Brief Report), 725-728 (1993).
     
  • H.P. Breuer, M. Holthaus:
    Adiabatic control of molecular excitation and tunneling by short laser pulses
    J. Phys Chem. 97, 12634-12643 (1993).
     
  • M. Holthaus, B. Just:
    Generalized π pulses
    Phys. Rev. A 49, 1950-1960 (1994).

     
  • M. Holthaus:
    A nonperturbative mechanism for fast, selective excitation of molecular states
    in: Femtosecond Chemistry (J. Manz and L. Wöste, eds.), Vol 2, 713-730 (Verlag Chemie, Weinheim, 1995).
     
  • K. Drese, M. Holthaus:
    Perturbative and nonperturbative processes in adiabatic population transfer
    Eur. Phys. J. D 3, 73-86 (1998).
     
  • K. Drese, M. Holthaus:
    Floquet theory for short laser pulses
    Eur. Phys. J. D 5, 119-134 (1999).

 

Semiklassische Untersuchung periodisch angetriebener Quantensysteme

  • H. P. Breuer, M. Holthaus:
    A semiclassical theory of quasienergies and Floquet wave functions
    Ann. Phys. (N.Y.) 211, 249-291 (1991).
     
  • J. Henkel, M. Holthaus:
    Classical resonances in quantum mechanics
    Phys. Rev. A 45, 1978-1986 (1992).
     
  • K. Dietz, J. Henkel, M. Holthaus:
    Transitions induced by separatrix crossing
    Phys. Rev. A 45, 4960-4968 (1992).
     
  • M. Holthaus:
    Strongly driven semiconductor quantum wells: New testing ground for ”quantum chaos”?
    Prog. Theor. Phys. (Suppl.) 116, 417-423 (1994).
    (Proceedings of the Yukawa International Seminar Quantum and Chaos: How Incompatible?, Kansai Seminar House, Kyoto, August 24-28, 1993.)
     
  • M. Holthaus, M.E. Flatté:
    Subharmonic generation in quantum systems
    Phys. Lett. A 187, 151-156 (1994).
     
  • M. Holthaus:
    On the classical-quantum correspondence for periodically time dependent systems
    Chaos, Solitons, & Fractals 5 (Special issue: Quantum Chaos: Present and Future), 1143-1167 (1995).
     
  • M.E. Flatté, M. Holthaus:
    Classical and quantum dynamics of a periodically forced particle in a triangular well
    Ann. Phys. (N.Y.) 245, 113-146 (1996).

Teilchen in periodisch angetriebenen Gittern

  • M. Holthaus:
    Collapse of minibands in far-infrared irradiated superlattices
    Phys. Rev. Lett. 69, 351-354 (1992).
     
  • M. Holthaus:
    Collapse of minibands in far-infrared irradiated superlattices
    Phys. Rev. Lett. 69, 351-354 (1992)
     
  • M. Holthaus, D. Hone:
    Quantum wells and superlattices in strong time dependent fields
    Phys. Rev. B 47, 6499-6508 (1993).
     
  • D. W. Hone, M. Holthaus:
    Locally disordered lattices in strong ac electric fields
    Phys. Rev. B II 48, 15123-15131 (1993).
     
  • M. Holthaus, D.W. Hone:
    ac Stark effects and harmonic generation in periodic potentials
    Phys. Rev. B 49, 16605-16608 (1994).
     
  • M. Holthaus, G.H. Ristow, D.W. Hone:
    ac-field-controlled Anderson localization in disordered semiconductor superlattices
    Phys. Rev. Lett. 75, 3914-3917 (1995).
     
  • M. Holthaus, G.H. Ristow, D.W. Hone:
    Random lattices in combined ac and dc electric fields: Anderson vs. Wannier-Stark localization
    Europhys. Lett. 32, 241-246 (1995).
     
  • M. Holthaus, D.W. Hone:
    Localization effects in ac-driven tight binding lattices
    Phil. Mag. B 74, 105-137 (1996).
     
  • K. Drese, M. Holthaus:
    Anderson localization in an ac-driven two-band model
    J. Phys.: Condens. Matter 8, 1193-1206 (1996).
     
  • K. Drese, M. Holthaus:
    Ultracold atoms in modulated standing light waves
    Chem. Phys. 217, (Special issue: Dynamics of Driven Quantum Systems), 201-219 (1997).
     
  • K. Drese, M. Holthaus:
    Exploring a metal-insulator transition with ultracold atoms in standing light waves?
    Phys. Rev. Lett. 78, 2932-2935 (1997).
     
  • M. Holthaus:
    Zwischen Quantenoptik und Festkörperphysik: Lokalisierungskontrolle durch periodischen Antrieb
    Physikal. Blätter 54, 643-646 (1998).
    (Festvortrag anlässlich der Verleihung des Gustav-Hertz-Preises auf der 62.~Physiker-tagung in Regensburg.)
     
  • M. Holthaus:
    Coherent control of quantum localization
    in: Coherent Control in Atoms, Molecules, and Semiconductors (W. Pötz and W. A. Schröder, eds.), 171-182 (Kluwer, Dordrecht, 1999).
    (Proceedings of an International Workshop held in Chicago, USA, May 19-22, 1998.)
     
  • S. Arlinghaus, M. Langemeyer, M. Holthaus:
    Dynamic localization in optical lattices
    in: Dynamical Tunneling -- Theory and Experiment (S. Keshavamurthy and P. Schlagheck, eds.) 289-310 (Taylor and Francis CRC, 2011)
     
  • S. Arlinghaus, M. Holthaus:
    Driven optical lattices as strong-field simulators
    Phys. Rev. A 81, 063612 (2010). [4 Seiten]
     
  • S. Arlinghaus, M. Holthaus:
    Generalized acceleration theorem for spatiotemporal Bloch waves
    Phys. Rev. B 84, 054301 (2011). [11 Seiten]
     
  • S. Arlinghaus, M. Holthaus:
    Controlled wave packet manipulation with driven optical lattices
    Phys. Rev. A 84, 063617 (2011). [10 Seiten]
     
  • S. Arlinghaus, M. Holthaus:
    ac Stark shift and multiphotonlike resonances in low-frequency-driven optical lattices
    Phys. Rev. A 85, 063601 (2012). [4 Seiten]
     
  • M. Holthaus:
    Tutorial: Floquet engineering with quasienergy bands of periodically driven optical lattices
    J. Phys. B 49, 013001 (2016). [26 Seiten]
     

Periodisch angetriebene Vielteilchensysteme

  • M. Holthaus:
    Towards coherent control of a Bose-Einstein condensate in a double well
    Phys. Rev. A 64, 011601 (Rapid Communication), (2001). [4 Seiten]
     
  • M Holthaus, S. Stenholm:
    Coherent control of the self-trapping transition
    Eur. Phys. J. B 20, 451-467 (2001).
     
  • T Jinasundera, C. Weiss, M. Holthaus:
    Many-particle tunnelling in a driven Bosonic Josephson junction
    Chem. Phys. 322 (Special issue: Real-time Dynamics of Complex Quantum Systems), 118-126 (2006).
     
  • A. Eckardt, T. Jinasundera, C. Weiss, M. Holthaus:
    Analog of photon-assisted tunneling in a Bose-Einstein condensate
    Phys. Rev. Lett. 95, 200401 (2005). [4 Seiten]
     
  • A. Eckardt, C. Weiss, M. Holthaus:
    Superfluid-insulator transition in a periodically driven optical lattice
    Phys. Rev. Lett. 95, 260404 (2005). [4 Seiten]
     
  • N. Teichmann, C. Weiss, M. Holthaus:
    From many-body interaction to nonlinearity
    Nonlinear Phenomena in Complex Systems 9, 254-264 (2006).
     
  • A. Eckardt, M. Holthaus:
    Dressed matter waves
    Journal of Physics: Conference Series 99, 012007 (2008). [14 Seiten]
     
  • A. Eckardt, M. Holthaus:
    Avoided-level-crossing spectroscopy with dressed matter waves
    Phys. Rev. Lett. 101, 245302 (2008). [4 Seiten]
     
  • A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo:
    Exploring dynamic localization with a Bose-Einstein condensate
    Phys. Rev. A 79, 013611 (2009). [7 Seiten]
    [Siehe auch die Synopse in Physics --- spotlighting exceptional research, Januar 2009]
     
  • E. Arimondo, D. Ciampini, A. Eckardt, M. Holthaus, O. Morsch:
    Kilohertz-driven Bose-Einstein condensates in optical lattices
    Adv. At. Mol. Opt. Phys. 61, 515--547 (2012).
     
  • B. Gertjerenken, M. Holthaus:
    Trojan quasiparticles
    New J. Phys. 16, 093009 (2014). [17 Seiten]   
     
  • B. Gertjerenken, M. Holthaus:
    Fluctuations of the order parameter of a mesoscopic Floquet condensate
    Phys. Rev. A 90, 053614 (2014). [5 Seiten]
     
  • B. Gertjerenken, M. Holthaus:
    Quasiparticle tunneling in a periodically driven bosonic Josephson junction
    Phys. Rev. A 90, 053622 (2014). [7 Seiten]
     
  • B. Gertjerenken, M. Holthaus:
    Emergence and destruction of macroscopic wave functions
    EPL 111, 30006 (2015). [6 Seiten]
     
  • B. Gertjerenken, M. Holthaus:
    N-coherence vs.\ t-coherence: An alternative route to the Gross-Pitaevskii equation
    Annals of Physics 362, 482-510 (2015).
     
  • C. Heinisch, M. Holthaus:
    Adiabatic preparation of Floquet condensates
    J. Mod. Opt. 63 (Special issue:  20 years of Bose-Einstein Condensates: Current trends and applications of ultracold quantum gases), 1768-1776 (2016).
     
  • C. Heinisch, M. Holthaus:
    Entropy production within a pulsed Bose-Einstein condensate
    Z. Naturforsch. A 71 (Focus section: Emergence in driven solid-state and cold-atom systems), 875-881 (2016).
     
  • N. Krüger, M. Holthaus:
    Following Floquet states in high-dimensional Hilbert spaces
    Phys. Rev. Research 3, 043133 (2021). [10 Seiten] 
     

Periodische Thermodynamik

  • M. Langemeyer, M. Holthaus:
    Energy flow in periodic thermodynamics
    Phys.  Rev. E 89, 012101 (2014). [10 Seiten]
     
  • H.-J. Schmidt, J. Schnack, M. Holthaus:
    Floquet theory of the analytical solution of a periodically driven two-level system
    Applicable Analysis 100, 992-1009 (2021; early access July 2019).
     
  • H.-J. Schmidt, J. Schnack, M. Holthaus:
    Periodic thermodynamics of the Rabi model with circular polarization for arbitrary spin quantum numbers
    Phys. Rev. E 100, 042141 (2019). [17 Seiten]
     
  • O. R. Diermann, M. Holthaus:
    Floquet-state cooling
    Sci. Rep. 9, 17614 (2019). [7 Seiten]
     
  • O. R. Diermann, H. Frerichs, M. Holthaus:
    Periodic thermodynamics of the parametrically driven harmonic oscillator
    Phys. Rev. E 100, 012102 (2019). [12 Seiten]
     
  • O. R. Diermann, H.-J. Schmidt, J. Schnack, M. Holthaus:
    Environment-controlled Floquet-state paramagnetism
    Phys. Rev. Research 2, 023293 (2020). [7 Seiten]

Energiedissipation in turbulenten Scherströmungen

  • Th. Gebhardt, S. Grossmann, M. Holthaus, M. Löhden:
    Rigorous bounds on the plane-shear-flow dissipation rate
    Phys. Rev. E 51, 360-365 (1995).
     
  • R. Nicodemus, S. Grossmann, M. Holthaus:
    Improved variational principle for bounds on energy dissipation in turbulent shear flow
    Physica D 101, 178-190 (1997).
     
  • R. Nicodemus, S. Grossmann, M. Holthaus:
    Variational bound on energy dissipation in turbulent shear flow
    Phys. Rev. Lett. 79, 4170-4173 (1997).
     
  • R. Nicodemus, S. Grossmann, M. Holthaus:
    Variational bound on energy dissipation in plane Couette flow
    Phys. Rev. E 56, 6774-6786 (1997).
     
  • R. Nicodemus, S. Grossmann, M. Holthaus:
    The background flow method. Part 1. Constructive approach to bounds on energy dissipation
    J. Fluid Mech. 363, 281-300 (1998).
     
  • R. Nicodemus, S. Grossmann, M. Holthaus:
    The background flow method. Part 2. Asymptotic theory of dissipation bounds
    J. Fluid Mech. 363, 301-323 (1998).
     
  • R. Nicodemus, S. Grossmann, M. Holthaus:
    Towards lowering dissipation bounds for turbulent flows
    Eur. Phys. J. B 10, 385-396 (1999).
     

Bose-Einstein-Kondensation

  • S. Grossmann, M. Holthaus:
    Bose-Einstein condensation in a cavity
    Z. Phys. B 97, 319-326 (1995).
     
  • S. Grossmann, M. Holthaus:
    Bose-Einstein condensation and condensate tunneling
    Z. Naturforsch. 50a, 323-326 (1995).
     
  • S. Grossmann, M. Holthaus:
    Das neue Gesicht der Bose-Einstein-Kondensation
    Physikal. Blätter 51, 923 (1995) [Erratum: 51, 1108 (1995)].
     
  • S. Grossmann, M. Holthaus:
    On Bose-Einstein condensation in harmonic traps
    Phys. Lett. A 208, 188-192 (1995).
     
  • S. Grossmann, M. Holthaus:
    λ-transition to the Bose-Einstein condensate
    Z. Naturforsch. 50a, 921-930 (1995).
     
  • S. Grossmann, M. Holthaus:
    Microcanonical fluctuations of a Bose system's ground state occupation number
    Phys. Rev. E 54, 3495-3498 (1996).
     
  • S. Grossmann, M. Holthaus:
    Fluctuations of the particle number in a trapped Bose-Einstein condensate
    Phys. Rev. Lett. 79, 3557-3560 (1997).
     
  • S. Grossmann, M. Holthaus:
    Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps
    Optics Express 1, 262-271 (1997).
     
  • M. Holthaus, E. Kalinowski, K. Kirsten:
    Condensate fluctuations in trapped Bose gases: Canonical vs. microcanonical ensemble
    Ann. Phys. (N.Y.) 270, 198-230 (1998).
     
  • S. Grossmann, M. Holthaus:
    From number theory to statistical mechanics: Bose-Einstein condensation in isolated traps
    Chaos, Solitons, & Fractals 10, 795-804 (1999).
    (Proceedings of the 178th Heraeus-Seminar Pattern formation in nonlinear optical systems, Bad Honnef, June 23-25, 1997.)
     
  • M. Holthaus, E. Kalinowski:
    Universal renormalization of saddle-point integrals for condensed Bose gases
    Phys. Rev. E 60, 6534-6537 (1999).
     
  • M. Holthaus, E. Kalinowski:
    The saddle-point method for condensed Bose gases
    Ann. Phys. (N.Y.) 276, 321-360 (1999).
     
  • M. Holthaus, K. T. Kapale, V. V. Kocharovsky, M. O. Scully:
    Master equation vs. partition function: Canonical statistics of ideal Bose-Einstein condensates
    Physica A 300, 433-467 (2001).
     
  • M. Holthaus, K. T. Kapale, M. O. Scully:
    Influence of boundary conditions on statistical properties of ideal Bose-Einstein condensates
    Phys. Rev. E 65, 036129 (2002). [5 Seiten]
     
  • C. Weiss, M. Holthaus:
    Asymptotics of the number partitioning distribution
    Europhys. Lett. 59, 486-492 (2002).
     
  • D. Boers, M. Holthaus:
    Canonical statistics of occupation numbers for ideal and weakly interacting Bose-Einstein condensates
    in: Dynamics and Thermodynamics of Systems with Long-Range Interactions (T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, eds.), Lecture Notes in Physics Vol. 602, 332-368 (Springer, Berlin Heidelberg 2002).
    (Lecture notes of a conference held at the centre de physique in Les Houches, France, February 18-22, 2002.)
     
  • C. Weiss, M. Block, M. Holthaus, G. Schmieder:
    Cumulants of partitions
    J. Phys. A: Math. Gen. 36, 1827-1844 (2003).  
     
  • C. Weiss, M. Block, D. Boers, A. Eckardt, M. Holthaus:
    Ground-state energy of a weakly interacting Bose gas: Calculation without regularization
    Z. Naturforsch. 59a, 1-13 (2004).
     
  • C. Weiss, S. Page, M. Holthaus:
    Factorising numbers with a Bose-Einstein condensate
    Physica A 341, 586-606 (2004).
     
  • A. Eckardt, C. Weiss, M. Holthaus:
    Ground-state energy and depletions for a dilute binary Bose gas
    Phys. Rev. A 70, 043615 (2004). [10 Seiten]
     
  • D. Boers, C. Weiss, M. Holthaus:
    Bogoliubov speed of sound for a dilute Bose-Einstein condensate in a 3d optical lattice
    Europhys. Lett.\ 67, 887-892 (2004).
     
  • C. Weiss, S.-A. Biehs, A. Eckardt, M. Holthaus:
    Weakly interacting Bose gas: The role of residual interactions
    Laser Physics 15, 626-635 (2005).   
     
  • V. V. Kocharovsky, Vl. V. Kocharovsky, M. Holthaus, C. H. Raymond Ooi, A. Svidzinsky, W. Ketterle, M. O. Scully:
    Fluctuations in Ideal and Interacting Bose-Einstein Condensates: From the laser phase transition analogy to squeezed states and Bogoliubov quasiparticles
    Adv. At. Mol. Opt. Phys. 53, 291-411 (2006).
     

 

Nahfeld-Wärmetransfer

  • M. Janowicz, D. Reddig, M. Holthaus:
    Quantum approach to electromagnetic energy transfer between two dielectric bodies
    Phys. Rev. A 68, 043823 (2003). [17 Seiten]
     
  • A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, M. Holthaus:
    Near-field heat transfer in a scanning thermal microscope
    Phys. Rev. Lett. 95, 224301 (2005). [4 Seiten]
     
  • S.-A. Biehs, D. Reddig, M. Holthaus:
    Thermal radiation and near field energy density of thin metallic films
    Eur. Phys. J. B 55, 237-251 (2007).
     
  • D. Grieser, H. Uecker, S.-A. Biehs, O. Huth, F. Rüting, M. Holthaus:
    Perturbation theory for plasmonic eigenvalues
    Phys. Rev. B 80, 245405 (2009). [8 Seiten]
    [Aufgenommen in die Ausgabe des Virtual Journal of Nanoscale Science & Technology vom 21. Dezember 2009]
     
  • O. Huth, F. Rüting, S.-A. Biehs, M. Holthaus:
    Shape-dependence of near-field heat transfer between a spheroidal nanoparticle and a flat surface
    Eur. Phys. J. Appl. Phys. 50, 10603 (2010). [9 Seiten]
     
  • S.-A. Biehs, O. Huth, F. Rüting, M. Holthaus:
    Spheroidal nanoparticles as thermal near-field sensors
    J. Appl. Phys. 108, 014312 (2010). [5 Seiten]
     
  • F. Rüting, S.-A. Biehs, O. Huth, M. Holthaus:
    Second-order calculation of the local density of states above a nanostructured surface
    Phys. Rev. B 82, 115443 (2010). [10 Seiten]
     
  • A. Kittel, D. Hellmann, L. Worbes, M. Holthaus:
    Das Nahfeld-Rasterwärmemikroskop
    Phys. Unserer Zeit 42, 10-11 (2011).
     

Metall-Isolator-Übergang im Bose-Hubbard-Modell

  • N. Teichmann, D. Hinrichs, M. Holthaus, A. Eckardt:
    Bose-Hubbard phase diagram with arbitrary integer filling
    Phys. Rev. B 79, 100503(R) (2009). [4 Seiten]
    [Aufgenommen in die Ausgabe des Virtual Journal of Applications of Superconductivity vom 15. März 2009]
     
  • N. Teichmann, D. Hinrichs, M. Holthaus, A. Eckardt:
    Process-chain approach to the Bose-Hubbard model: Ground-state properties and phase diagram
    Phys. Rev. B 79, 224515 (2009). [14 Seiten]
    [Aufgenommen in die Ausgabe des Virtual Journal of Atomic Quantum Fluids vom Juli 2009]
     
  • N. Teichmann, D. Hinrichs, M. Holthaus:
    Reference data for phase diagrams of triangular and hexagonal bosonic lattices
    EPL 91, 10004 (2010). [6 Seiten]
     
  • D. Hinrichs, A. Pelster, M. Holthaus:
    Perturbative calculation of critical exponents for the Bose-Hubbard model
    Appl. Phys. B 113 (Special issue: Selected papers presented at the 2012 Spring Meeting of the Quantum Optics and Photonics section of the German Physical Society), 57-67 (2013).
     
  • S. Sanders, C. Heinisch, M. Holthaus:
    Hypergeometric analytic continuation of the strong-coupling perturbation series for the 2d~Bose-Hubbard model
    EPL 111, 20002 (2015). [6 Seiten]   
     
  • S. Sanders, M. Holthaus:
    Hypergeometric continuation of divergent perturbation series: I. Critical exponents of the Bose-Hubbard model
    New J. Phys. 19, 103036 (2017). [10 Seiten]   
     
  • S. Sanders, M. Holthaus:
    Hypergeometric continuation of divergent perturbation series: II. Comparison with Shanks transformation and Padé approximation
    J. Phys. A: Math. Theor. 50, 465302 (2017). [24 Seiten]
     
  • S. Sanders, M. Holthaus:
    Quantum critical properties of Bose-Hubbard models
    J. Phys. A: Math. Theor. 52, 255001 (2019). [11 Seiten]
     

Sonstiges

  • H.P. Breuer, K. Dietz, M. Holthaus, Th. Millack:
    On the quantum field theory of photoionisation and electron scattering reactions on atoms
    Z. Phys. D 7, 9-21 (1987).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    On the classical dynamics of strongly driven anharmonic oscillators
    Physica D 46, 317-341 (1990).
     
  • H.P. Breuer, K. Dietz, M. Holthaus:
    A remark on the Kramers-Henneberger transformation
    Phys. Lett. A 165, 341-346 (1992).
     
  • M. Holthaus, C.S. Kenney, A.J. Laub:
    Numerical methods for studying parameter dependence of solutions to Schrödinger's equation
    in: Differential Equations, Dynamical Systems, and Control Science: A Festschrift in Honor of Lawrence Markus (K.D. Elworthy, W.N. Everitt, and E.B. Lee, eds.), Lecture Notes in Pure and Applied Mathematics 152, 101-114 (Marcel Dekker, New York, 1993).
     
  • K. Drese, M. Holthaus:
    Phase diagram for a modified Harper model
    Phys. Rev. B 55, R14693-R14696 (1997).   
     
  • M. Holthaus:
    Bloch oscillations and Zener breakdown in an optical lattice
    J. Opt. B: Quantum Semiclass. Opt. 2, 589-604 (2000).
     
  • M. Block, M. Holthaus:
    Pseudopotential approximation in a harmonic trap
    Phys. Rev. A 65, 052102 (2002). [4 Seiten]
     
  • J. Pade, M. Block, M. Holthaus:
    s-wave pseudopotential for anisotropic traps
    Phys. Rev. A 68, 063402 (2003). [6 Seiten]
     
  • D. J. Boers, B. Goedeke, D. Hinrichs, M. Holthaus:
    Mobility edges in bichromatic optical lattices
    Phys. Rev. A 75, 063404 (2007). [6 Seiten]
     
  • M. Janowicz, M. Holthaus:
    Sub- and superluminal kink-like waves in the kinetic limit of Maxwell-Bloch equations
    J. Phys. A: Math. Theor. 44, 025301 (2011). [13 Seiten]
     

Publikationen, die von online-Datenbanken erfasst werden

(Stand: 19.01.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page