Doktorand*innentag 2024

Der diesjährige Doktorand*innentag findet am 20.11.2024 statt - dieses Mal online. Alle Infos zur Anmeldung hier.

Haben Sie Wünsche oder Vorschläge zum Workshop-Programm der Graduiertenakademie?
Sprechen Sie uns gern an!

Akademische Karrierewege

Noch mehr Angebote für Promovierende und Postdocs? Die Webseite Akademische Karrierewege bündelt alle Angebote nach Zielgruppe.

Kontakt

Dr. Susanne Elpers
Referentin Akademische Karrierewege, Schwerpunkt Postdocs und Gleichstellung

+49 (0)441-798 2939

Dr. Julia Anna Matz 
Referentin Akademische Karrierewege, Schwerpunkt Promovierende und Internationales

Dr. Sandra Wienand
Referentin Akademische Karrierewege, Schwerpunkt Promovierende und Internationales

+49(0)441-798 2914

Sachbearbeitung

Sabine Osterkamp

+49(0)441-798 4628

Termin

Termine

Analysis, visualisation and statistics using R for Environmental Scientists

Analysis, visualisation and statistics using R for Environmental Scientists

Course Description:
This will be an introduction course intended to give students and doctoral researchers an overview and introduction to R applied to analysing environmental data, with specific emphasis on chemical datasets. The course will begin with a brief introduction to the R environment and basic function and then include an overview of statistical analyses that are valuable in environmental datasets. The doctoral researchers and master students will be able to use R efficiently and they will be able to improve their scientific work with the possibilities of R.

Tentative schedule with course content:

1.    Introduction to the R environment (R-Studio) 

  •  Projects handling
  • Package management
  • Data: Input / Output
  • Workspace
  • Installing and loading R packages, importing, manipulating, and exporting data.

2.    Pre-Processing and Data composition: Looking at the R data frame, cleaning up and compose data, dealing with missing data, data normalization, basic functions (mean and weighted mean, standard error, etc.)

3.    Visualizing Data in R.

  • ggplot
  • plotly
  • shiny    Scatter plots, bar plots, violin plots, etc. Interactive possibilities. 

4.    Data Reports and publishing with R markdown and Shiny.
        Reporting with markdown and Shiny.
5.    Basic Statistics and Statistical Analyses.
        Calculating and visualizing a PCA, PCoA, NMDS, ANOVA, linear models.
6.    Handling largescale server side data sets using the HPC-Cluster.
       Analyze and correlate large chemical data (e.g FT-ICR-MS).

Target group: Graduate level course, with specific aim at doctoral researchers and new master’s students who want to use R to analyse their data.


Requirements: All levels are welcome. Students should be familiar with basic concepts of data analysis. Students and doctoral researchers will need to bring a laptop with the current version of R and RStudio installed. It would be nice if the participant have already started to get familiar with RStudio.

Course instructors / Lecturers:
André El-Ama: andre.el-ama@uni-oldenburg.de
Priv.-Doz.Dr. Jan Freund: jan.freund@uni-oldenburg.de
Dr. Hannelore Waska: hannelore.waska@uni-oldenburg.de
Matthias Schröder: matthias.schroeder@uni-oldenburg.de
Dr. Ferdinand Esser: ferdinand.esser@uni-oldenburg.de

Time / Date / Format: 
Seminar is organised block wise at the following dates: 25.07., 26.07., and 27.07.2023 and 26.09., 27.09. and 28.09.2023.
Meeting time is 5 hours with 1 hours break. 10:00 – 15:00

Registration for the workshop via Stud.IP is required!


Room: W15 1-146 (ICBM building)

25.07.2023 10:00 – 28.09.2023 15:00

(Stand: 17.10.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page