Kontakt
Dr. Takaoki Kasahara
Postdoc-Wissenschaftler
Google Scholar ORCID-ID Web of Science
2001: Ph.D., Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo (Japan)
1998: M.S., Graduate School of Arts and Sciences, The University of Tokyo (Japan)
1996: B.S., College of Arts and Sciences, The University of Tokyo (Japan)
Wissenschaftlicher Werdegang
since 2022: Postdoctoral researcher at the AG Neurosensorics, funded by the ERC Synergy grant ‘QuantumBirds’
2020–2022: Young Chief Investigator, RIKEN Center for Brain Science (Japan)
2010–2022: Adjunct lecturer, Waseda University (Japan)
2007–2020: Deputy Laboratory Head, RIKEN Brain Science Institute (Japan)
2001–2007: Research Scientist, RIKEN Brain Science Institute (Japan)
Lehrtätigkeit
2010–2022: Adjunct lecturer, Faculty of Science and Engineering, Waseda University, Japan
2022: Ad-hoc visiting lecturer, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
2021: Ad-hoc visiting lecturer, Graduate School of Medicine, The University of Tokyo, Japan
2014: Lecture, International summer intensive course, RIKEN/Nanjing University, Japan
2012: Ad-hoc visiting lecturer, Graduate School of Science, The University of Tokyo, Japan
2010: Ad-hoc visiting lecturer, College of Arts and Sciences, The University of Tokyo, Japan
2007: Lecture, Brain science training program, RIKEN, Japan
Publikationen
Nakamura, T., Yoshihara, T., Tanegashima, C., Kadota, M., Kobayashi, Y., Honda, K., Ishiwata, M., Ueda, J., Hara, T., Nakanishi, M., Takumi, T., Itohara, S., Kuraku, S., Asano, M., Kasahara, T., Nakajima, K., Tsuboi, T., Takata, A., and Kato, T. Transcriptomic dysregulation and autistic-like behaviors in Kmt2c haploinsufficient mice rescued by an LSD1 inhibitor. Mol. Psychiatry (in press) DPO: 10.1038/s41380-024-02479-8
Hagihara ,H., Shoji, H., Hattori, S., ... Kasahara, T., ... and Miyakawa, T. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. eLife 12, RP89376 (2024) DOI: 10.7554/eLife.89376
Yamamoto, H., Lee-Okada, H.C., Ikeda, M., Nakamura, T., Saito, T., Takata, A., Yokomizo, T., Iwata, N., Kato, T., and Kasahara, T. (Co-Corresponding author) GWAS-identified bipolar disorder risk allele in the FADS1/2 gene region links mood episodes and unsaturated fatty acid metabolism in mutant mice. Mol. Psychiatry 28, 2848–2856 (2023) DOI: 10.1038/s41380-023-01988-2
Kasahara, T. (Corresponding author), Mekada, K., Abe, K., Ashworth, A. and Kato, T. Complete sequencing of the mouse pseudoautosomal region, the most rapidly evolving ‘chromosome’ bioRxiv (2022) DOI: 10.1101/2022.03.26.485930
Sugawara, H., Bundo, N., Kasahara, T., Nakachi, Y., Ueda, J., Kubota-Sakashita, M., Iwamoto, K., and Kato, T. Cell-type-specific DNA methylation analysis of the frontal cortices of mutant Polg1 transgenic mice with neuronal accumulation of deleted mitochondrial DNA. Mol. Brain 15, 9 (2022).
Obata, Y., Kubota-Sakashita, M., Kasahara, T. (Co-Corresponding author), Mizuno, M., Nemoto, T., and Kato, T. Phenethylamine is a substrate of monoamine oxidase B in the paraventricular thalamic nucleus. Sci. Rep. 2, 17 (2021).
Kageyama, Y., Deguchi, Y., Kasahara, T., Tani, M., Kuroda, K., Inoue, K., and Kato, T. Intra-individual state-dependent comparison of plasma mitochondrial DNA copy number and IL-6 levels in patients with bipolar disorder. J. Affect. Disord. 299, 644–651 (2021).
Nakamura, T., Nakajima, K., Kobayashi, Y., Itohara, S., Kasahara, T., Tsuboi, T., and Kato, T. Functional and behavioral effects of de novo mutations in calcium-related genes in patients with bipolar disorder. Hum. Mol. Genet. 30, 1851–1862 (2021).
Zhang, C., Clough, S.J., Adamah-Biassi, E.B., Sveinsson, M.H., Hutchinson, A.J., Miura, I., Furuse, T., Wakana, S., Matsumoto, Y.K., Okanoya, K., Hudson, R.L., Kato, T., Dubocovich, M.L., and Kasahara, T. (Co-Corresponding author) Impact of endogenous melatonin on rhythmic behaviors, reproduction, and survival revealed in melatonin-proficient C57BL/6J congenic mice. J. Pineal Res. 71, e12748 (2021).
Bagge, E.K., Fujimori-Tonou, N., Kubota-Sakashita, M., Kasahara, T., and Kato, T. Unbiased PCR-free spatio-temporal mapping of the mtDNA mutation spectrum reveals brain region-specific responses to replication instability. BMC Biol. 18, 150 (2020).
Kasahara, T. (Co-Corresponding author), Kubota-Sakashita, M., Nagatsuka, Y., Hirabayashi, Y., Hanasaka, T., Tohyama, K., and Kato, T. Cardiolipin is essential for early embryonic viability and mitochondrial integrity of neurons in mammals. FASEB J. 34, 1465–1480 (2020).
Kageyama, Y., Kasahara, T., Kato, M., Sakai, S., Deguchi, Y., Tani, M., Kuroda, K., Hattori, K., Yoshida, S., Goto, Y., Kinoshita, T., Inoue, K., and Kato, T. The relationship between circulating mitochondrial DNA and inflammatory cytokines in patients with major depression. J. Affect. Disord. 233, 15–20 (2018).
Kageyama, Y., Kasahara, T., Nakamura, T., Hattori, K., Deguchi, Y., Tani, M., Kuroda, K., Yoshida, S., Goto, Y., Inoue, K., and Kato, T. Plasma nervonic acid is a potential biomarker for major depressive disorder: a pilot study. Int. J. Neuropsychopharmacol.21, 207–215 (2018).
Kasahara, T., Ishiwata, M., Kakiuchi, C., Fuke, S., Iwata, N., Ozaki, N., Kunugi, H., Minabe, Y., Nakamura, K., Iwata, Y., Fujii, K., Kanba, S., Ujike, H., Kusumi, I., Kataoka, M., Matoba, N., Takata, A., Iwamoto, K., Yoshikawa, T., and Kato, T. Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder. Psychiatry Clin. Neurosci. 71, 518–529 (2017).
Kageyama, Y., Kasahara, T., Morishita, H., Mataga, N., Deguchi, Y., Tani, M., Kuroda, K., Hattori, K., Yoshida, S., Inoue, K., and Kato, T. Search for plasma biomarkers in drug-free patients with bipolar disorder and schizophrenia using metabolome analysis. Psychiatry Clin. Neurosci. 71, 115–123 (2017).
Kasahara, T., Takata, A., Kato, T.M., Kubota-Sakashita, M., Sawada, T., Kakita, A., Mizukami, H., Kaneda, D., Ozawa, K., and Kato, T. Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol. Psychiatry 21, 39–48 (2016).
Fuke, S., Kametani, M., Yamada, K., Kasahara, T., Kubota-Sakashita, M., Kujoth, G.C., Prolla, T.A., Hitoshi, S., and Kato, T. Heterozygous Polg mutation causes motor dysfunction due to mtDNA deletions. Ann. Clin. Transl. Neurol. 1, 909–920 (2014).
Fuke, S., Kubota-Sakashita, M., Kasahara, T., Shigeyoshi, Y., and Kato, T. Regional variation in mitochondrial DNA copy number in mouse brain. Biochim. Biophys. Acta 1807, 270–274 (2011).
Kubota, M., Kasahara, T., Iwamoto, K., Komori, A., Ishiwata, M., Miyauchi, T., and Kato, T. Therapeutic implications of down-regulation of cyclophilin D in bipolar disorder. Int. J. Neuropsychopharmacol. 13, 1355–1368 (2010).
Kasahara, T. (Co-corresponding author), Abe, K., Mekada, K., Yoshiki, A., and Kato, T. Genetic variation of melatonin productivity in laboratory mice under domestication. Proc. Natl. Acad. Sci. USA. 107, 6412–6417 (2010).
Hayashi, A., Kasahara, T., Kametani, M., Toyota, T., Yoshikawa, T., and Kato, T. Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. Int. J. Neuropsychopharmacol. 4, 1–11 (2009).
Hayashi, A., Kasahara, T., Kametani, M., and Kato, T. Attenuated BDNF-induced upregulation of GABAergic markers in neurons lacking Xbp1. Biochem. Biophys. Res. Commun. 376, 758–763 (2008).
Kato, T., Ishiwata, M., Yamada, K., Kasahara, T., Kakiuchi, C., Iwamoto, K., Kawamura, K., Ishihara, H., and Oka, Y. Behavioral and gene expression analyses of Wfs1 knockout mice as a possible animal model of mood disorder. Neurosci. Res. 61, 143–153 (2008).
Kasahara, T. (Corresponding author), Kubota, M., Miyauchi, T., Ishiwata, M., and Kato, T. A marked effect of electroconvulsive stimulation on behavioral aberration of mice with neuron-specific mitochondrial DNA defects. PLoS ONE 3, e1877 (2008).
Hayashi, A., Kasahara, T., Iwamoto, K., Ishiwata, M., Kametani, M., Kakiuchi, C., Furuichi, T., and Kato, T. The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J. Biol. Chem. 282, 34525–34534 (2007).
Kubota, M., Kasahara, T., Nakmura, T., Ishiwata, M., Miyauchi, T., and Kato, T. Abnormal Ca2+ dynamics in transgenic mice with neuron-specific mitochondrial DNA defects. J. Neurosci. 26, 12314–12324 (2006).
Kasahara, T., Kubota, M., Miyauchi, T., Noda, Y., Mouri, A., Nabeshima, T., and Kato, T. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol. Psychiatry 11, 577–593 (2006).
Kakiuchi, C., Iwamoto, K., Ishiwata, M., Bundo, M., Kasahara, T., Kusumi, I., Tsujita, T., Okazaki, Y., Nanko, S., Kunugi, H., Sasaki, T., and Kato, T. Impaired feedback regulation of XBP1 as a genetic risk factor of bipolar disorder. Nat. Genetics 35, 171–175 (2003).
Kasahara, T., and Kato, T. A new redox-cofactor vitamin for mammals. Nature 422, 832 (2003).
Kasahara, T., Okano, T., Haga, T., and Fukada, Y. Opsin–G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock. J. Neurosci. 22, 7321–7325 (2002).
Okano, T., Yamamoto, K., Okano, K., Hirota, T., Kasahara, T., Sasaki, M., Takanaka, Y., and Fukada, Y. Chicken pineal clock genes: implication of BMAL2 as a bidirectional regulator in circadian clock oscillation. Genes Cells 6, 825–836 (2001).
Hirota, T., Kagiwada, S., Kasahara, T., Okano, T., Murata, M., and Fukada, Y. Effect of brefeldin A on melatonin secretion of chick pineal cells. J. Biochem. 129, 51–59 (2001).
Kasahara, T., Okano, T., Yoshikawa, T., Yamazaki, K., and Fukada, Y. Rod-type transducin alpha-subunit mediates a phototransduction pathway in the chicken pineal gland. J. Neurochem. 75, 217–224 (2000).
Matsushita, A., Yoshikawa, T., Okano, T., Kasahara, T., and Fukada, Y. Colocalization of pinopsin with two types of G-protein alpha-subunits in the chick pineal gland. Cell Tissue Res. 299, 245–251 (2000).
Okano, T., Yamazaki, K., Kasahara, T., and Fukada, Y. Molecular cloning of heterotrimeric G-protein alpha-subunits in chicken pineal gland. J. Mol. Evol. 44, S91–97 (1997).
Auszeichnungen, Fellowships und Zuschüsse
2021 - 2022: Japan Agency for Medical Research and Development (AMED), Strategic Research Program for Brain Sciences, Co-Investigator (~14.000 Euro)
2021: e-Teaching Good Practice Award, Waseda University
2020 - 2022: Japan Society for the Promotion of Science/The Ministry of Education, Culture, Sports, Science and Technology (KAKENHI), Grant-in-Aid for Scientific Research (C), Principal Investigator (~39.000 Euro)
2017 - 2021: KAKENHI, Grant-in-Aid for Scientific Research (A), Co-Investigator (~52.000 Euro)
2016 - 2021: AMED, Strategic Research Program for Brain Sciences, Co-Investigator (~1.600.000 Euro)
2016 - 2019: KAKENHI, Grant-in-Aid for Exploratory Research, Principal Investigator (~26.000 Euro)
2014: RIKEN, Incentive Research Grant, Principal Investigator (~14.000 Euro)
2012 - 2014: KAKENHI, Grant-in-Aid for Scientific Research on Innovative Areas, Principal Investigator (~75.000 Euro)
2011 - 2014: KAKENHI, Grant-in-Aid for Young Scientists (A), Principal Investigator (~150.000 Euro)
2011 - 2013: RIKEN, President’s Discretionary Fund, Principal Investigator (~140.000 Euro)
2011 - 2012 : KAKENHI, Grant-in-Aid for Exploratory Research, Principal Investigator (~21.000 Euro)
2011: Outstanding Presentation Award, Mouse Genetics 2011
2007: Academic Prize, Japanese Society for Biological Psychiatry
2008 - 2010: KAKENHI, Grant-in-Aid for Young Scientists (B), Principal Investigator (~23.000 Euro)
2005 - 2007: KAKENHI, Grant-in-Aid for Young Scientists (B), Principal Investigator (~24.000 Euro)
2004: Ando Momofuku Honor Prize, Ando Foundation
2003 - 2005: RIKEN, President’s Discretionary Fund, Principal Investigator (~140.000 Euro)
2002 - 2004: KAKENHI, Grant-in-Aid for Young Scientists (B), Principal Investigator (~24.000 Euro)
1998 - 2001: KAKENHI, Grant-in-Aid for JSPS Fellows, Principal Investigator (~19.000 Euro)
2000: Graduate Student Oversea Presentation Award, The University of Tokyo
Vorträge
2023: The melatonin-proficient mouse and melatonin-deficient mouse. Joint meeting of the 45th Annual Meeting of Japanese Society of Sleep Research, the 30th Annual Meeting of Japanese Society for Chronobiology, and the 3rd Asian Narcolepsy and Hypersomnolence Society Meeting. Japan.
2021: Old knowledge and new insights on melatonin. 25th High-level seminar. Advanced Collaborative research Organization for Smart Society, Waseda University (Online).
2018: Evaluation of rare mutations in bipolar disorder by a combination of biochemical analysis and computer prediction. Joint meeting of the 40th Annual Meeting of Japanese Society of Biological Psychiatry and the 61st Annual Meeting of the Japanese Society for Neurochemistry. Kobe-shi, Japan.
2018: How to develop and diagnose animal models for mood disorder. 114th Annual Meeting of Japanese Society for Psychiatry and Neurology. Kobe-shi, Japan.
2017: Mitochondrial dysfunction in mood disorder: From humans to mice and back. 5th Annual Molecular Psychiatry Meeting. San Francisco, USA.
2016: Mouse model with spontaneous recurrent depression-like episodes tells a relationship between mood disorder and paraventricular thalamic nucleus. 46th Annual Meeting of Japanese Society of Neuropsychopharmacology. Seoul, South Korea.
2014: Do Mice Suffer from Depression? The Third RIKEN BRC/Nanjing University MARC International Summer Intensive Course of the Mouse. Tsukuba-shi, Japan.
2014: Mice with neuron-specific accumulation of mtDNA deletions, the DSM-5-validated animal model for mood disorder". 16th Annual Conference of the International Society for Bipolar Disorders. Seoul, South Korea.
2013: A mouse model fulfilling clinical diagnosis criteria of major depression. Dokkyo Medical University. Mibu-cho, Japan.
2013: DSM-based assessment of episodic behavioral change in mutant Polg1 transgenic. 11th World congress of Biological Psychiatry. Kyoto-shi, Japan.
2013: Episodic behavioral change in mutant Polg1 transgenic mice meets clinical diagnostic criteria for major depressive episode. Neuro2013. Kyoto-shi, Japan.
2012: Development and characterization of a mouse model for mood disorder. Infrafrontier/International Mouse Phenotyping Consortium Korea Meeting. Jeju, South Korea.
2012: Biological approach to bipolar disorder. Japanese Ophthalmological Society. Tokyo, Japan.
2011: A possible role of mitochondrial dysfunction in bipolar disorder. The American College of Neuropsychopharmacology. Waikoloa, HI, USA.
2011: Evolution of mice under domestication: melatonin productivity. Japanese Association for Laboratory Animal Science. Tokyo, Japan.
2011: Mitochondrial DNA polymerase (POLG1) and bipolar disorder: from genetics to animal models. RIKEN Mental Disorder Workshop. RIKEN BSI, Wako-shi, Japan.
2010: Genetic variation in melatonin synthesizing enzymes—chance or necessity? Japanese Society for Chronobiology. Tokyo, Japan.
2010: Approach to the mouse pseudoautosomal region. The Genetics Society of Japan. Sapporo-shi, Japan.
2009: Mouse models for bipolar disorder based on rare hereditary diseases. The Japan Neuroscience Society. Kyoto-shi, Japan.
2009: Mitochondrial dysfunction in bipolar disorder. World Congress of Biological Psychiatry Asia-Pacific Congress. Toyama-shi, Japan.
2007: Mitochondrial dysfunction in bipolar disorder, of an animal model and humans. Korean Society of Biological Psychiatry. Seoul, South Korea.
2007: Mitochondrial dysfunction in mental disorders. Neuro 2007 (The Japan Neuroscience Society). Yokohama-shi, Japan.
2006: Chronobiology of bipolar disorder model mice. Japanese Society for Chronobiology. Tokyo, Japan.
2004: Molecular basis of bipolar disorder. China-India-Japan-Korea Joint Workshop on Neurobiology and Neuroinformatics. Manesar, India.
2003: Pyrroloquinoline quinone as a vitamin. The University of Shiga Prefecture. Hikone-shi, Japan.