L. Stepien, S. Hallerbach, und F. Köster, "Accelerating Simulation-Enabled Engineering" in Proc. 2022 IEEE International Symposium on Systems Engineering (ISSE), 2022.
@inproceedings{stepien2022accelerating, title={Accelerating Simulation-Enabled Engineering},
author={Stepien, Leonard and Hallerbach, Sven and K{\"o}ster, Frank},
booktitle={2022 IEEE International Symposium on Systems Engineering (ISSE)},
pages={1--8},
year={2022},
organization={IEEE}
}
L. Stepien und F. Köster, "Flexible Model Exchange in Modelling Smart Mobility by Using Domain Ontologies" in Proc. 2022 IEEE International Systems Conference (SysCon), 2022.
@inproceedings{stepien2022flexible, title={Flexible Model Exchange in Modelling Smart Mobility by Using Domain Ontologies},
author={Stepien, Leonard and K{\"o}ster, Frank},
booktitle={2022 IEEE International Systems Conference (SysCon)},
pages={1--7},
year={2022},
organization={IEEE}
}
K. F. S. Hallerbach U. Eberle, Simulation-Enabled Methods for the Development, Testing and Validation of Cooperative and Automated VehiclesZenodo.
@misc{dlr186897,
author = {S. Hallerbach, U. Eberle, F. K{\"o}ster},
journal = {Autonomes Fahren. Ein Treiber zuk{\"u}nftiger Mobilit{\"a}t},
month = {Februar},
title = {Simulation-Enabled Methods for the Development, Testing and Validation of Cooperative and Automated Vehicles},
publisher = {Zenodo},
year = {2022},
note = {pages 30--41}
L. Klitzke, K. Gimm, C. Koch, und F. Köster, "Extraction and Analysis of Highway On-Ramp Merging Scenarios from Naturalistic Trajectory Data" in Proc. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 2022.
doi: 10.1109/ITSC55140.2022.9922191
@INPROCEEDINGS{9922191,
author={Klitzke, Lars and Gimm, Kay and Koch, Carsten and Köster, Frank},
booktitle={2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)},
title={Extraction and Analysis of Highway On-Ramp Merging Scenarios from Naturalistic Trajectory Data},
year={2022},
volume={},
number={},
pages={654--660},
doi={10.1109/ITSC55140.2022.9922191}
}
P. Feifel, B. Franke, A. P. Raulf, F. Schwenker, F. Bonarens, und F. Köster, "Revisiting the Evaluation of Deep Neural Networks for Pedestrian Detection" in Proc. Proceedings of the Workshop on Artificial Intelligence Safety 2022 (AISafety 2022) co-located with the Thirty-First International Joint Conference on Artificial Intelligence and the Twenty-Fifth European Conference on Artificial Intelligence (IJCAI-ECAI-2022), Vienna, Austria, July 24-25, 2022, 2022.
@inproceedings{DBLP:conf/ijcai/FeifelFRSBK22,
author = {Patrick Feifel and Benedikt Franke and Arne P. Raulf and Friedhelm Schwenker and Frank Bonarens and Frank K{\"{o}}ster},
editor = {Gabriel Pedroza and Xin Cynthia Chen and Jos{\'{e}} Hern{\'{a}}ndez{-}Orallo and Xiaowei Huang and Hu{\'{a}}scar Espinoza and Richard Mallah and John A. McDermid and Mauricio Castillo{-}Effen},
title = {Revisiting the Evaluation of Deep Neural Networks for Pedestrian Detection},
booktitle = {Proceedings of the Workshop on Artificial Intelligence Safety 2022 (AISafety 2022) co-located with the Thirty-First International Joint Conference on Artificial Intelligence and the Twenty-Fifth European Conference on Artificial Intelligence (IJCAI-ECAI-2022), Vienna, Austria, July 24-25, 2022},
series = {{CEUR} Workshop Proceedings},
volume = {3215},
publisher = {CEUR-WS.org},
year = {2022},
url = {http://ceur-ws.org/Vol-3215/11.pdf},
timestamp = {Mon, 30 Jan 2023 11:25:04 +0100},
biburl = {https://dblp.org/rec/conf/ijcai/FeifelFRSBK22.bib},
bibsource = {dblp computer science bibliography, https://dblp.org},
note = {10 pages}
}
V. Lizenberg, M. R. Alkurdi, U. Eberle, und F. Köster, "Intelligent Co-Simulation Framework for Cooperative Driving Functions" in Proc. ICCP: 17th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 2021.
@INPROCEEDINGS{Lizenberg2021IEEE,
author = {Lizenberg, Viktor and Alkurdi, Mhd Redwan and Eberle, Ulrich and K{\"o}ster, Frank},
title = {{I}ntelligent {C}o-{S}imulation {F}ramework for {C}ooperative {D}riving {F}unctions},
booktitle = {ICCP: 17th International Conference on Intelligent Computer Communication and Processing},
year = {2021},
address = {Cluj-Napoca, Romania},
publisher = {IEEE}
}
V. Lizenberg, D. Bischoff, Y. Haridy, U. Eberle, S. Knapp, und F. Köster, "Simulation-Based Evaluation of Cooperative Maneuver Coordination and its Impact on Traffic Quality" SAE International Journal of Advances and Current Practices in Mobility from WCX: World Congress Experience Digital Summit, vol. 3, iss. 6.
doi: 10.4271/2021-01-0171
@ARTICLE{Lizenberg2021SAE,
author = {Lizenberg, Viktor and Bischoff, Daniel and Haridy, Youssef and Eberle, Ulrich and Knapp, Steffen and K{\"o}ster, Frank},
title = {{S}imulation-{B}ased {E}valuation of {C}ooperative {M}aneuver {C}oordination and its {I}mpact on {T}raffic {Q}uality},
journal = {SAE International Journal of Advances and Current Practices in Mobility {from} WCX: World Congress Experience Digital Summit},
year = {2021},
volume = {3},
number = {6},
pages = {3159--3169},
note = {Technical Paper 2021-01-0171},
doi = {10.4271/2021-01-0171}
}
M. Nichting, T. Lobig, und F. Köster, "Case Study on Gap Selection for Automated Vehicles Based on Deep Q-Learning" in Proc. 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), 2021.
doi: 10.1109/ICAICST53116.2021.9497818
@INPROCEEDINGS{9497818,
author={Nichting, Matthias and Lobig, Thomas and K{\"o}ster, Frank},
booktitle={2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST)},
title={Case Study on Gap Selection for Automated Vehicles Based on Deep Q-Learning},
year={2021},
volume={},
number={},
pages={252-257},
doi={10.1109/ICAICST53116.2021.9497818}
}
L. Stepien und F. Köster, "Parametrizing Complex Co-Simulations to Support Decision Making in Mobility" in Proc. INFORMATIK 2021, 2021.
doi: 10.18420/informatik2021-015
@inproceedings{mci/Stepien2021,
author = {Stepien, Leonard and K{\"o}ster, Frank},
title = {Parametrizing Complex Co-Simulations to Support Decision Making in Mobility},
booktitle = {INFORMATIK 2021},
year = {2021},
editor = {} , pages = { 185-195 } , doi = {10.18420/informatik2021-015},
publisher = {Gesellschaft f{\"u}r Informatik, Bonn},
address = {}
}
Progress in Sustainable Mobility Research, Marx Gomez, J., Halberstadt, J., Henkel, A., Köster, F., Sauer, J., Taeger, J., Winter, A., und Woisetschläger, D. M. Eds., Springer.
doi: 10.1007/978-3-030-70841-2
@book{WinterGomez+2021nemo, editor = {Marx Gomez, Jorge and Halberstadt, Jantje and Henkel, Anna and K{\"o}ster, Frank and Sauer, J{\"u}rgen and Taeger, J{\"u}rgen and Winter, Andreas and Woisetschl{\"a}ger, David M.},
title = {Progress in Sustainable Mobility Research},
pages = {175},
publisher = {Springer},
isbn = {978-3-030-70840-5},
doi = {10.1007/978-3-030-70841-2},
year = {2021}
V. Lizenberg, B. Büchs, S. Knapp, R. Mannale, und F. Köster, "Graphical Data Visualization for Vehicular Communication Systems in Real and Virtual Test Environments" in Proc. AmE: Automotive meets Electronics (11th GMM-Symposium), Dortmund, Germany, 2020.
@INPROCEEDINGS{Lizenberg2020AmE,
author = {Lizenberg, Viktor and B{\"u}chs, Bernd and Knapp, Steffen and Mannale, Roman and K{\"o}ster, Frank},
title = {{G}raphical {D}ata {V}isualization for {V}ehicular {C}ommunication {S}ystems in {R}eal and {V}irtual {T}est {E}nvironments},
booktitle = {AmE: Automotive meets Electronics (11th GMM-Symposium)},
address = {Dortmund, Germany},
pages = {65--70},
publisher = {VDE Verlag GmbH},
month = {10--11 March},
year = {2020}
}
L. Klitzke, C. Koch, und F. Köster, "Identification of Lane-Change Maneuvers in Real-World Drivings with Hidden Markov Model and Dynamic Time Warping" in Proc. 23rd Intelligent Transportation Systems Conference (IEEE ITSC 2020), 2020.
@inproceedings{dlr135748, year = {2020},
journal = {IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC},
author = {Lars Klitzke and Carsten Koch and Frank K{\"o}ster},
title = {Identification of Lane-Change Maneuvers in Real-World Drivings with Hidden Markov Model and Dynamic Time Warping},
booktitle = {23rd Intelligent Transportation Systems Conference (IEEE ITSC 2020)},
keywords = {Lane-change Maneuver, Hidden Markov Model, Dynamic Time Warping, Divisive Hierarchical Clustering, Automated Driving},
url = {https://elib.dlr.de/135748/},
note = {7 pages},
abstract = {For the introduction of new automated driving functions, the systems need to be verified extensively. A scenario-driven approach has become an accepted method for this task. But to verify the functionality of an automated vehicle in the simulation in a certain scenario such as a lane change, relevant characteristics of scenarios need to be identified. This, however, requires to extract these scenarios from real-world drivings accurately. For that purpose, this work proposes a novel framework based on a set of unsupervised learning methods to identify lane-changes on motorways. To represent various types of lane changes, the maneuver is split up into primitive driving actions with an Hidden Markov Model and Divisive Hierarchical Clustering. Based on this, lane change maneuvers are identified using Dynamic-Time-Warping. The presented framework is evaluated with a real-world test drive and compared to other baseline methods. With a f1 score of 98.01{$\backslash$}\% in lane-change identification, the presented approach shows promising results.}
}
M. Nichting, D. Heß, J. Schindler, T. Hesse, und F. Köster, "Space Time Reservation Procedure (STRP) for V2X-Based Maneuver Coordination of Cooperative Automated Vehicles in Diverse Conflict Scenarios" in Proc. 2020 IEEE Intelligent Vehicles Symposium (IV), 2020.
doi: 10.1109/IV47402.2020.9304769
@INPROCEEDINGS{9304769,
author={Nichting, Matthias and He{\ss},
Daniel and Schindler, Julian and Hesse, Tobias and K{\"o}ster, Frank},
booktitle={2020 IEEE Intelligent Vehicles Symposium (IV)},
title={Space Time Reservation Procedure (STRP) for V2X-Based Maneuver Coordination of Cooperative Automated Vehicles in Diverse Conflict Scenarios},
year={2020},
volume={},
number={},
pages={502-509},
doi={10.1109/IV47402.2020.9304769}
}
F. Köster, C. Linder, und C. Sontag, Datenarchitekturen fahrzeuggenerierter Daten. Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie - Endbericht.
@misc{KoFDLR,
author = {K{\"o}ster, Frank and Christian Linder and Christopher Sontag},
title = {Datenarchitekturen fahrzeuggenerierter Daten. Studie im Auftrag des Bundesministeriums f{\"u}r Wirtschaft und Energie - Endbericht},
pages = {1-36} , month = {Februar},
year = {2020}
}
C. Hungar, S. Jürgens, D. Wilbers, und F. Köster, "Map-Based Localization with Factor Graphs for Automated Driving using Non-Semantic LiDAR Features" in Proc. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020.
doi: 10.1109/ITSC45102.2020.9294726
@INPROCEEDINGS{9294726,
author={Hungar, Constanze and J{\"u}rgens, Stefan and Wilbers, Daniel and K{\"o}ster, Frank},
booktitle={2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)},
title={Map-Based Localization with Factor Graphs for Automated Driving using Non-Semantic LiDAR Features},
year={2020},
volume={},
number={},
pages={1-6},
doi={10.1109/ITSC45102.2020.9294726}
V. Lizenberg, S. Knapp, R. Mannale, V. Wendel, und F. Köster, "Simulationsbasierte Bewertungs- und Vergleichsmethodik für Abstimmungsverfahren in kooperativen Fahrfunktionen" in Proc. AAET: Automatisiertes und vernetztes Fahren, Braunschweig, Germany, 2019.
@INPROCEEDINGS{Lizenberg2019AAET,
author = {Lizenberg, Viktor and Knapp, Steffen and Mannale, Roman and Wendel, Viktor and K{\"o}ster, Frank},
title = {{S}imulationsbasierte {B}ewertungs- und {V}ergleichsmethodik f{\"u}r {A}bstimmungsverfahren in kooperativen {F}ahrfunktionen},
booktitle = {AAET: Automatisiertes und vernetztes Fahren},
address = {Braunschweig, Germany},
pages = {48--65},
publisher = {ITS mobility e.V.},
month = {6--7 February},
year = {2019}
}
C. Hungar, F. Köster, und S. Jürgens, "Ein Beitrag zur kartenbasierten Positionierung von Fahrzeugen mittels Mustererkennung in LiDAR-Daten" in Proc. AAET: Automatisiertes und vernetztes Fahren, Braunschweig, Germany, 2019.
@INPROCEEDINGS{HungaretAl,
author = {C. Hungar and F. K{\"o}ster and S. J{\"u}rgens},
title = {Ein Beitrag zur kartenbasierten Positionierung von Fahrzeugen mittels Mustererkennung in LiDAR-Daten},
booktitle = {AAET: Automatisiertes und vernetztes Fahren},
address = {Braunschweig, Germany},
pages = {135-155},
month = {5--7 February},
year = {2019}
}
D. Heß, S. Lapoehn, F. Utesch, M. Fischer, J. Schindler, T. Hesse, und F. Köster, "Contributions of the EU Projects UnCoVerCPS and Enable-S3 to Highly Automated Driving in Conflict Situations" in Proc. AAET: Automatisiertes und vernetztes Fahren, Braunschweig, Germany, 2019.
@INPROCEEDINGS{HessetAl,
author = {D. He{\ss} and S. Lapoehn and F. Utesch and M. Fischer and J. Schindler and T. Hesse and F. K{\"o}ster},
title = {Contributions of the EU Projects UnCoVerCPS and Enable-S3 to Highly Automated Driving in Conflict Situations},
booktitle = {AAET: Automatisiertes und vernetztes Fahren},
address = {Braunschweig, Germany},
pages = {92-117},
month = {5--7 February},
year = {2019}
}
J. Eilbrecht, D. Heß, F. Köster, und O. Stursberg, "Sichere Trajektorienplanung für autonome Fahrzeuge unter Verwendung steuerbarer und erreichbarer Mengen" in Proc. AAET: Automatisiertes und vernetztes Fahren, Braunschweig, Germany, 2019.
@INPROCEEDINGS{EilbrechtetAl,
author = {J. Eilbrecht and D. He{\ss} and F. K{\"o}ster and O. Stursberg},
title = {Sichere Trajektorienplanung f{\"u}r autonome Fahrzeuge unter Verwendung steuerbarer und erreichbarer Mengen},
booktitle = {AAET: Automatisiertes und vernetztes Fahren},
address = {Braunschweig, Germany},
pages = {66-91},
month = {5--7 February},
year = {2019}
}
L. Klitzke, C. Koch, A. Haja, und F. Köster, "Real-world Test Drive Vehicle Data Management System for Validation of Automated Driving Systems" in Proc. Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, 2019.
doi: 10.5220/0007720501710180
@INPROCEEDINGS{vehits19,
author={Lars Klitzke and Carsten Koch and Andreas Haja and Frank K{\"o}ster},
title={Real-world Test Drive Vehicle Data Management System for Validation of Automated Driving Systems},
booktitle={Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS},
year={2019},
pages={171-180},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0007720501710180},
isbn={978-989-758-374-2}
}
C. Hungar, S. Brakemeier, S. Jürgens, und F. Köster, "GRAIL: A Gradients-of-Intensities-based Local Descriptor for Map-based Localization Using LiDAR Sensors" in Proc. Proceedings of IEEE Conference on Intelligent Transportation Systems (ITSC), 2019.
doi: 10.1109/ITSC.2019.8917525
@INPROCEEDINGS{chungaretAl,
author={C. Hungar and S. Brakemeier and S. J{\"u}rgens and F. K{\"o}ster},
title={GRAIL: A Gradients-of-Intensities-based Local Descriptor for Map-based Localization Using LiDAR Sensors},
booktitle={Proceedings of IEEE Conference on Intelligent Transportation Systems (ITSC)},
year={2019},
month = {October},
pages={4398-4403},
publisher={IEEE},
doi={10.1109/ITSC.2019.8917525}
}
L. Klitzke, J. Meyer, T. Leune, C. Koch, und F. Köster, "DAGMaR: A DAG-based Robust Road Membership Estimation Framework for Scenario Mining" in Proc. Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), 2019.
doi: 10.1109/IOTSMS48152.2019.8939213
@INPROCEEDINGS{klitzkeetAl,
author={L. Klitzke and J. Meyer and T. Leune and C. Koch and F. K{\"o}ster},
title={DAGMaR: A DAG-based Robust Road Membership Estimation Framework for Scenario Mining},
booktitle={Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)},
year={2019},
month = {October},
pages={358-365},
publisher={IEEE},
doi={10.1109/IOTSMS48152.2019.8939213}
}
C. Hungar, J. Fricke, J. S., und F. Köster, "Detection of Feature Areas for Map-based Localization Using LiDAR Descriptors" in Proc. 16th IEEE Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 2019.
@INPROCEEDINGS{FricketAl,
author = {C. Hungar and J. Fricke and S. J{\"u}rgens and F. K{\"o}ster},
title = {Detection of Feature Areas for Map-based Localization Using LiDAR Descriptors},
booktitle = {16th IEEE Workshop on Positioning, Navigation and Communications (WPNC)},
address = {Bremen, Germany},
note = {6 pages},
month = {October},
year = {2019}
}
F. Köster und J. Mazzega, "Testfeld Niedersachsen - Bausteine und Anwendungsmöglichkeiten" in Proc. B.H. Oppermann, J. Stender-Vorwachs. Autonomes Fahren - Technische Grundlagen, Rechtsprobleme, Rechtsfolgen, 2019.
@INPROCEEDINGS{KoesteretAl,
author = {F. K{\"o}ster and J. Mazzega},
title = {Testfeld {N}iedersachsen - {B}austeine und {A}nwendungsm{\"o}glichkeiten},
booktitle = {B.H. Oppermann, J. Stender-Vorwachs. Autonomes Fahren - Technische Grundlagen, Rechtsprobleme, Rechtsfolgen},
edition ={2. Auflage},
publisher = {C.H. BECK},
pages = {31--38},
month= {November},
year = {2019}
}
M. Nichting, D. Heß, J. Schindler, T. Hesse, und F. Köster, "Explicit Negotiation Method for Cooperative Automated Vehicles" in Proc. 2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2019.
doi: 10.1109/ICVES.2019.8906401
@INPROCEEDINGS{8906401,
author={Nichting, Matthias and He{\ss},
Daniel and Schindler, Julian and Hesse, Tobias and K{\"o}ster, Frank},
booktitle={2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES)},
title={Explicit Negotiation Method for Cooperative Automated Vehicles},
year={2019},
volume={},
number={},
pages={1-7},
doi={10.1109/ICVES.2019.8906401}
S. Hallerbach, Y. Xia, U. Eberle, und F. Köster, "Simulation-Based Identifcation of Critical Scenarios for Cooperative and Automated Vehicles" SAE International Journal of Connected and Automated Vehicles.
@article{dlr125759, month = {Dezember},
title = {Simulation-Based Identifcation of Critical Scenarios for Cooperative and Automated Vehicles},
author = {Sven Hallerbach and Yiqun Xia and Ulrich Eberle and Frank K{\"o}ster},
publisher = {SAE International},
year = {2018},
pages = {93--106},
journal = {SAE International Journal of Connected and Automated Vehicles},
keywords = {Automated vehicles, Cooperative vehicles, Simulators, Test facilities, Test procedures, Simulation and modeling, Identification and verifcation, Simulation-based testing, Automotive engineering, Traffic quality},
url = {https://elib.dlr.de/125759/},
abstract = {One of the major challenges for the automotive industry will be the release and validation of cooperative and automated vehicles. The immense driving distance that needs to be covered for a conventional validation process requires the development of new testing procedures. Further, due to limited market penetration in the beginning, the driving behavior of other human trafc participants, regarding a mixed trafc environment, will have a signifcant impact on the functionality of these vehicles. In this article, a generic simulation-based toolchain for the model-in-the-loop identifcation of critical scenarios will be introduced. The proposed methodology allows the identifcation of critical scenarios with respect to the vehicle development process. The current development status of the cooperative and automated vehicle determines the availability of testable simulation models, software, and components. The identifcation process is realized by a coupled simulation framework. A combination of a vehicle dynamics simulation that includes a digital prototype of the cooperative and automated vehicle, a trafc simulation that provides the surrounding environment, and a cooperation simulation including cooperative features is used to establish a suitable comprehensive simulation environment. The behavior of other trafc participants is considered in the trafc simulation environment. The criticality of the scenarios is determined by appropriate metrics. Within the context of this article, both standard safety metrics and newly developed trafc quality metrics are used for evaluation. Furthermore, we will show how the use of these new metrics allows for investigating the impact of cooperative and automated vehicles on trafc. The identifed critical scenarios are used as an input for X-in-the-Loop methods, test benches, and proving ground tests to achieve an even more precise comparison to real-world situations. As soon as the vehicle development process is in a mature state, the digital prototype becomes a {``}digital twin{''} of the cooperative and automated vehicle.}
}
D. Heß, R. Lattarulo, P. Joshue, S. Julian, H. Tobias, und K. Frank, "Fast Maneuver Planning for Cooperative Automated Vehicles" in Proc. 21st IEEE International Conference on Transportation Systems, 2018.
@inproceedings{dlr119834, booktitle = {21st IEEE International Conference on Transportation Systems},
month = {November},
title = {Fast Maneuver Planning for Cooperative Automated Vehicles},
author = {Daniel He{\ss} and Ray Lattarulo and P{\'e}rez Joshue and Schindler Julian and Hesse Tobias and K{\"o}ster Frank},
year = {2018},
keywords = {Cooperative Automated Driving, Motion Planning, Vehicle to Vehicle Communication, V2V, QP, STRP},
url = {https://elib.dlr.de/119834/},
pages = {1625--1632},
abstract = {A lane following and lane changing maneuver planning method for automated vehicles is investigated, which is capable of evaluating and incorporating cooperative agreements between several automated vehicles. An application level cooperation protocol is discussed, which allows vehicles to negotiate space time reservations in conflict areas via Vehicle-to-Vehicle communication. The planning method is based on decoupling of longitudinal and lateral movement directions, formulation of convex quadratic programming problems and input-output linearization for recovery of a full state reference trajectory and feed forward controls. Several different lane following and merging maneuvers can be planned in one update cycle in order to support an informed selection of the currently best driving strategy. We demonstrate and evaluate the communication protocol and the maneuver planning method on cooperative lane changing scenarios with a physical automated vehicle as well as in a real time simulation.}
}
H. Hungar und F. Köster, "Formalisierung von Szenario-Klassen zur Absicherung automatisierter Fahrfunktionen" in Proc. AAET 2018: Automatisiertes und vernetztes Fahren, 2018.
@inproceedings{dlr125272,
author = {Hardi Hungar and Frank K{\"o}ster},
note = {Bezug zu dem BMWi-Projekt PEGASUS (2016-2019)},
booktitle = {AAET 2018: Automatisiertes und vernetztes Fahren},
editor = {ITS mobility e. V.},
title = {Formalisierung von Szenario-Klassen zur Absicherung automatisierter Fahrfunktionen},
journal = {AAET 2018: Automatisiertes und vernetztes Fahren},
pages = {97--114},
year = {2018},
keywords = {Automatisiertes Fahren, Testspezifikation, Testen},
url = {https://elib.dlr.de/125272/},
abstract = {Um die Sicherheit automatisierter Fahrfunktion nachzuweisen, ist es erforderlich, systematisch alle potentiell kritischen Situationen zu erfassen, in welcher die Fahrfunktion im Betrieb zuverl{\"a}ssig agieren muss. Die hohe Anzahl der relevanten Situationen macht eine maschinelle Behandlung erforderlich. Deshalb m{\"u}ssen sie formalisiert beschrieben werden, so dass Testf{\"a}lle automatisch abgeleitet werden k{\"o}nnen. Diese Arbeit stellt einen Ansatz f{\"u}r eine solche Formalisierung vor. Basis der Beschreibungen sind Man{\"o}ver von Verkehrsteilnehmern, die zu Ablaufstrukturen zusammengesetzt werden. Die verschiedenen konkreten Auspr{\"a}gungen der Ablaufstrukturen ergeben die Testf{\"a}lle.}
}
S. Hallerbach, U. Eberle, und F. Köster, AAET 2017: Absicherungs- und Bewertungsmethoden für kooperative hochautomatisierte Fahrzeuge.
@misc{hallerbachAAET17, month = {Februar},
title = {AAET 2017: Absicherungs- und Bewertungsmethoden f{\"u}r kooperative hochautomatisierte Fahrzeuge},
author = {Hallerbach, Sven and Eberle, Ulrich and K{\"o}ster, Frank},
year = {2017}
}
S. Hallerbach, U. Eberle, und F. Köster, AmE 2017: The challenges of releasing cooperative and highly automated vehicles -- A look beyond functional requirements.
@misc{hallerbachAmE17, month = {M{\"a}rz},
title = {AmE 2017: The challenges of releasing cooperative and highly automated vehicles -- A look beyond functional requirements},
author = {Hallerbach, Sven and Eberle, Ulrich and K{\"o}ster, Frank},
year = {2017}
}
K. Preuk, M. Dotzauer, F. Köster, und M. Jipp, Encounters Between Drivers with and without Cooperative Intelligent Transport SystemsSpringer Verlag.
@incollection{dlr103398, editor = {Klaus Bengler and Julia Dr{\"u}ke and Silja Hoffmann and Dietrich Manstetten and Alexandra Neukum},
title = {Encounters Between Drivers with and without Cooperative Intelligent Transport Systems},
author = {Katharina Preuk and Mandy Dotzauer and Frank K{\"o}ster and Meike Jipp},
publisher = {Springer Verlag},
year = {2017},
pages = {363--377},
journal = {UR:BAN Human Factors in Traffic},
keywords = {Human Factors, Urban Traffic, MoSAIC, Multi-Driver Simulation},
url = {http://elib.dlr.de/103398/}
}
B. Schürmann, D. Heß, J. Eilbrecht, O. Stursberg, F. Köster, und M. Althoff, "Ensuring Drivability of Planned Motions from Simple Models Using Formal Methods" in Proc. ITSC 2017, 2017.
@inproceedings{dlr111510, booktitle = {ITSC 2017},
title = {Ensuring Drivability of Planned Motions from Simple Models Using Formal Methods},
author = {Bastian Sch{\"u}rmann and Daniel He{\ss} and Jan Eilbrecht and Olaf Stursberg and Frank K{\"o}ster and Matthias Althoff},
year = {2017},
keywords = {Automated Driving, Conformance Testing, Reachability Analysis, Formal Verification},
url = {http://elib.dlr.de/111510/},
abstract = {Motion planning of automated vehicles requires dynamical models to ensure that obtained trajectories are drivable. An often overlooked aspect is that usually simplified models are used for motion planning, which do not always sufficiently conform to the real behavior of vehicles. Thus, collision avoidance and drivability is not necessarily ensured. We address this problem by modeling vehicles as differential inclusions composed from simple dynamics plus set-based uncertainty; conformance testing is used to determine the required uncertainty. To quickly provide the set of solutions of these uncertain models, we provide pre-computed reachable sets (i.e. union of all possible solutions) for pre-selected motion primitives. The reachable sets of vehicles are obtained by a novel combination of optimization techniques and reachability analysis {--} they enable us to guarantee safety by checking their mutual non-intersection for consecutive time intervals. The benefits of our approach are demonstrated by numerical experiments.}
}
M. Dotzauer, S. Knake-Langhorst, und F. Köster, Understanding interactions between bicyclists and motorists in intersectionsSpringer.
@incollection{dlr104172,
author = {Mandy Dotzauer and Sascha Knake-Langhorst and Frank K{\"o}ster},
series = {ATZ/MTZ- Fachbuch},
editor = {Klaus Bengler and Slija Hoffmann and Dietrich Manstetten and Alexandra Neukum and Julia Dr{\"u}ke},
title = {Understanding interactions between bicyclists and motorists in intersections},
publisher = {Springer},
journal = {UR:BAN Human Factors in Traffic},
pages = {311--324},
year = {2017},
keywords = {cooperation, bicyclist-motorist-interaction, oberservation, intersections},
url = {http://elib.dlr.de/104172/},
abstract = {Especially in urban areas, more people began choosing the bicycle over the car in order to get from point A to point B. On the downside, more bicyclist in the streets resulted in a 50 percent increase of fatalities. Last year, in Germany, bicyclist accounted for twelve percent of all fatalities. Research shows that a major contributing factor to those fatalities is {`}insufficient cooperation{'} between cyclists and motorists. Nonetheless, most encounters of bicyclists and motorists neither result in conflicts nor in fatal crashes. In order to investigate interaction patterns between bicyclists and motorists, those road users were observed at a busy intersection in Braunschweig for a period of 10 working days. Situations, recorded at AIM research intersection, in which motorists turned right and bicyclists went straight through the intersection, were analyzed. The goal was to understand the behavior and the underlying mechanism, quantify the observed behavior, and identify objective parameters to map the behavior. As a result, the knowledge may be used to implement strategies and technology that may predict and prevent fatal crashes in intersections.}
J. Schindler und F. Köster, "A Model-Based Approach for Performing Successful Multi-Driver Scenarios" in Proc. The Driving Simulation Conference 2016 VR, 2016.
@inproceedings{dlr102754, month = {September},
author = {Julian Schindler and Frank K{\"o}ster},
booktitle = {The Driving Simulation Conference 2016 VR},
editor = {Andras Kemeny and Fr{\'e}d{\'e}ric M{\'e}rienne and Florent Colombet and St{\'e}phane Espi{\'e}},
title = {A Model-Based Approach for Performing Successful Multi-Driver Scenarios},
journal = {Proceedings of the DSC 2016 Europe},
pages = {93--97},
year = {2016},
keywords = {Model-Based Scenario Design; Multi-Driver; MoSAIC; Bayesian Networks},
url = {http://elib.dlr.de/102754/},
abstract = {When designing driving simulator studies, sometimes high efforts have to be spent to make them successful. Some drivers may not behave as desired, leading to situations unforeseen by the developers. When looking at multi-driver studies, where multiple drivers need to interact with each other in one virtual environment, the probability of performing a successful study is even lower, as the behaviour of the human drivers cannot be fully controlled. While [Oel15b] already proposed guidelines for the creation of such scenarios, this paper describes how the probability of success can be monitored and even enhanced during scenario execution. Therefore, it describes an approach where the probability of success is modelled and where the scenario is dynamically adapted to provide higher rates of success.}
}
F. Köster, "Anwendungsplattform für Intelligente Mobilität - Dienstspektrum und Architektur" ZEVrail - Zeitschrift für das gesamte System Bahn, vol. 8.
@article{dlr106220, volume = {8},
month = {August},
author = {Frank K{\"o}ster},
editor = {Hans-Peter Dipl.-Ing. Lang and Olaf Naujoks and Christian Prof.Dr.-Ing. Schindler and Peter Univ.-Prof.Dipl.-Ing.Dr.techn. Veit},
title = {Anwendungsplattform f{\"u}r Intelligente Mobilit{\"a}t - Dienstspektrum und Architektur},
publisher = {Georg Siemens Verlag},
year = {2016},
journal = {ZEVrail - Zeitschrift f{\"u}r das gesamte System Bahn},
pages = {276--282},
keywords = {AIM, Fahrzeugautomatisierung, kooperative Fahrzeug-/Infrastruktursysteme, Verkehrsfluss, Multimodale Mobilit{\"a}t},
url = {http://elib.dlr.de/106220/},
abstract = {Mit der seit 2014 operativen Anwendungsplattform f{\"u}r Intelligente Mobilit{\"a}t (AIM) verf{\"u}gt das Deutsche Zentrum f{\"u}r Luft- und Raumfahrt e.V. (DLR) in Braunschweig (Niedersachsen) {\"u}ber eine einzigartige Gro{\ss}forschungsanlage f{\"u}r Akteure aus Wissenschaft und Wirtschaft im Bereich der intelligenten Mobilit{\"a}tsdienste, dies sind z.B. Fahrzeughersteller, Zulieferer, Anbieter von Verkehrsmanagementl{\"o}sungen, Service-Provider im Feld der Verkehrslageinformationen, Universit{\"a}ten und andere wissenschaftliche Einrichtungen. AIM unterst{\"u}tzt Forschungs- und Entwicklungsprojekte durch eine umfangreiche generische Infrastruktur in Laboren, auf Testgel{\"a}nden und im {\"o}ffentlichen Raum, die sowohl Arbeiten mit hohem systemischen Anspruch als auch einer herausragenden fachlichen Tiefe erm{\"o}glicht. Anwendungsschwerpunkte liegen zum Beispiel in den Bereichen Fahrzeugautomatisierung, kooperative Fahrzeug-/Infrastruktursysteme, Verkehrsfluss und inter- sowie multimodale Mobilit{\"a}t. In diesen Bereichen werden auch Arbeiten zur Markteinf{\"u}hrung und Migration unterst{\"u}tzt. F{\"u}r die Ableitung neuartiger L{\"o}sungsans{\"a}tze im Bereich Verkehr kann AIM die Anforderungsermittlung und Systemevaluation unterst{\"u}tzen, wobei auch auf Informationen zum allgemeinen Mobilit{\"a}tsverhalten zur{\"u}ckgegriffen werden kann.}
}
J. Weimer, S. Schmid, M. Schier, F. Rinderknecht, G. Kopp, F. Köster, und T. Bünte, "Next Generation Car -- Technologies for future EVs" in Proc. EVS29, 2016.
@inproceedings{dlr105078, booktitle = {EVS29},
month = {Juni},
title = {Next Generation Car {--} Technologies for future EVs},
author = {J{\"u}rgen Weimer and Stephan Schmid and Michael Schier and Frank Rinderknecht and Gerhard Kopp and Frank K{\"o}ster and Tilman B{\"u}nte},
year = {2016},
journal = {Electric Vehicle Symposium EVS29 Montr{\'e}al, Qu{\'e}bec, Canada, June 19-22, 2016},
keywords = {car, van, hydrogen, EV (electric vehicle), ZEV (zero emission vehicle), multidisciplinary},
url = {http://elib.dlr.de/105078/},
abstract = {The German Aerospace Center has merged a wide range of technological research and development for future cars in a meta-project called {``}Next Generation Car{''}. Within this large research project technologies for three vehicle concepts for different applications (urban, regional and interurban), and with different powertrains (fuel-cell, battery and hybrid) are developed. Research questions on different levels from conceptual question about vehicle modularity down to detailed technological aspects like combining hydrogen storage with cabin climatisation are covered by this project. This paper shows the holistic research approach and presents a selection of vehicle concepts and technology topics.}
}
J. Mazzega, F. Köster, K. Lemmer, und T. Form, "Absicherung hochautomatisierter Fahrfunktionen" ATZ Automobiltechnische Zeitschrift, vol. 118, iss. 10.
@article{dlr107250, volume = {118},
number = {10},
month = {Oktober},
author = {Jens Mazzega and Frank K{\"o}ster and Karsten Lemmer and Thomas Form},
series = {ATZ - Automobiltechnische Zeitschrift},
title = {Absicherung hochautomatisierter Fahrfunktionen},
publisher = {Axel Springer Verlag},
year = {2016},
journal = {ATZ Automobiltechnische Zeitschrift},
keywords = {Automatisiertes Fahren PEGASUS},
url = {http://elib.dlr.de/107250/}
}
F. Köster, B. Jäger, M. M. zu Hörste, und T. Hesse, "Automatisiertes Fahren - Kann die Schiene von der Straße lernen? (ein technisch-betrieblicher Vergleich)" ZEVrail - Zeitschrift für das gesamte System Bahn, iss. 140.
@article{dlr106606, number = {140},
month = {Oktober},
author = {Frank K{\"o}ster and B{\"a}rbel J{\"a}ger and Michael Meyer zu H{\"o}rste and Tobias Hesse},
editor = {Hans-Peter Lang and Olaf Naujoks and Christian Schindler and Peter Veit},
title = {Automatisiertes Fahren - Kann die Schiene von der Stra{\ss}e lernen? (ein technisch-betrieblicher Vergleich)},
publisher = {Georg Siemens Verlag},
year = {2016},
journal = {ZEVrail - Zeitschrift f{\"u}r das gesamte System Bahn},
pages = {416--423},
keywords = {Automatisiertes Fahren, Bahn, Stra{\ss}e, Schienenverkehr, Verkehrssysteme},
url = {http://elib.dlr.de/106606/},
abstract = {Automatisierung ist eine Schl{\"u}sselfrage f{\"u}r die Erh{\"o}hung der Sicherheit und Effizienz im Stra{\ss}enverkehr und die Erh{\"o}hung der Leistungsf{\"a}higkeit und Flexibilit{\"a}t im Schienenverkehr. Beide Systeme unterscheiden sich grunds{\"a}tzlich in Spurf{\"u}hrung und Bremsweg, Art der Steuerung und des Systemdurchgriffes, dem Zusammenspiel Fahrzeug-Infrastruktur sowie der Sicherheitsphilosophie. Auf der Stra{\ss}e unterst{\"u}tzen hoch entwickelte Assistenzsysteme den Fahrer. Auf der Schiene wird schon seit den 80er Jahren im Metrobetriebe vollautomatisiert gefahren. Neue Herausforderungen ergeben sich hier f{\"u}r eine weitergehende Automatisierung auf offenen Strecken. Trotz der systembedingten Unterschiede gibt es bei beiden Verkehrssystemen auch vergleichbare Fragestellungen, deren L{\"o}sung in den einzelnen Systemen einen ganz unterschiedlichen Reifegrad aufweist. Ein jeweiliger Blick {\"u}ber den Tellerrand lohnt also. {\"U}bernehmen sollte der Sektor Bahn die geschlossene Vorgehensweise des Automotive Sektors und das Thema gleichfalls in einem Dialog mit Wirtschaft, Betreibern, zulassender Beh{\"o}rde, Forschung und Politik vorantreiben und parallel regulatorische und rechtliche Fragestellungen kl{\"a}ren.}
}
S. Knake-Langhorst, K. Gimm, T. Frankiewicz, und F. Köster, "Test Site AIM -- Toolbox and Enabler for Applied Research and Development in Traffic and Mobility" Transportation Research Procedia, vol. 14.
@article{dlr98595, volume = {14},
month = {Juni},
author = {Sascha Knake-Langhorst and Kay Gimm and Tobias Frankiewicz and Frank K{\"o}ster},
title = {Test Site AIM {--} Toolbox and Enabler for Applied Research and Development in Traffic and Mobility},
publisher = {Elsevier},
journal = {Transportation Research Procedia},
pages = {2197--2206},
year = {2016},
keywords = {intelligent mobility services; test site; situation assessment; V2X communications; cooperative systems},
url = {http://elib.dlr.de/98595/},
abstract = {The Application Platform for Intelligent Mobility (AIM) is a test site for research and development in the domain of intelligent mobility services, which resides in the city of Braunschweig and in parts of the circumjacent regions. The test site, which was set into operation in 2014, contains powerful instruments for simulating, measuring and manipulating microscopic and macroscopic aspects of traffic and mobility. Thus, AIM can serve as platform for research and development projects with high systemic and technical demands. For this purpose, AIM contains simulation environments, specific test tracks and {--} above all {--} several service platforms in the field. The manuscript gives a detailed inside view on two of the most sophisticated services: The AIM Research Intersection is an instrument for detection and assessment of traffic behavior in a complex intersection under real-time conditions. The AIM Reference Track provides V2X functionality for long-term operation in the scale of an urban environment. For both services field applications are depicted to demonstrate the opportunities for individual usage. In addition, AIM services can be seen as relevant components of a toolbox for research and development in the field of applied mobility services. That means that services can be combined to generate multiple options for further applications as additional value apart from their particular task. The manuscript exemplarily outlines a combination of the aforementioned services to bring up the opportunity of infrastructural supported cooperative driver assistance systems. The manuscript ends with a sum-up and an outlook on future works and the integration in the further development outline of AIM.}
}
F. Köster, T. Form, K. Lemmer, und J. Plättner, "Wie gut müssen - automatisierte Fahrzeuge fahren - PEGASUS" in Proc. AAET 2016 - Automatisierungssysteme, Assistenssysteme und eingebettete Systeme für Transportmittel, 2016.
@inproceedings{dlr103235, month = {Februar},
author = {Frank K{\"o}ster and Thomas Form and Karsten Lemmer and Jens Pl{\"a}ttner},
booktitle = {AAET 2016 - Automatisierungssysteme, Assistenssysteme und eingebettete Systeme f{\"u}r Transportmittel},
editor = {(Hrsg.) ITS automotive nord},
title = {Wie gut m{\"u}ssen - automatisierte Fahrzeuge fahren - PEGASUS},
journal = {Tagungsband: AAET 2016},
pages = {292--300},
year = {2016},
keywords = {PEGASUS, Automatisierte Fahrzeuge},
url = {http://elib.dlr.de/103235/},
abstract = {Das Projekt PEGASUS (Projekt zur Etablierung von generell akzeptierten G{\"u}tekriterien, Werkzeugen und Methoden sowie Szenarien und Situationen zur Freigabe hochautomatisierter Fahrfunktionen) schlie{\ss}t wesentliche L{\"u}cken im Bereich des Testens sowie zur Freigabe hochautomatisierter Fahrfunktionen. PEGASUS leistet damit einen Beitrag, dass Ergebnisse aus Forschungs- und Entwicklungsprojekten zum hochautomatisierten Fahren sowie bereits existierende Fahrzeugprototypen in marktf{\"a}hige Produkte {\"u}berf{\"u}hrt werden k{\"o}nnen. Hierzu werden im Projekt u.a. Kriterien und Ma{\ss}e zur Funktionsbewertung erarbeitet, G{\"u}teniveaus festgelegt und die f{\"u}r Tests und Freigaben ben{\"o}tigten Methoden sowie Werkzeugketten aufgebaut. Die Projektergebnisse werden praktisch angewendet und hinsichtlich ihrer Wirksamkeit und Praxistauglichkeit bewertet. Zentraler Use-Case des Projekts ist die Funktion des hochautomatisierten Autobahn-Chauffeurs. Die bislang herstellerspezifischen Vorgehensweisen zur Erprobung und Absicherung von Assistenzfunktionen bzw. Automatisierungsfunktionen werden durch PEGASUS in ein neues Vorgehen {\"u}berf{\"u}hrt, welches sich auf wissenschaftlich motivierten Kriterien, Ma{\ss}en, G{\"u}teniveaus, Testkatalogen, Testmethoden und entsprechend ausgerichteten Werkzeugketten abst{\"u}tzt. Das Projekt definiert damit erstmals einen wissenschaftlich hergeleiteten Rahmen zum Testen und zur Freigabe hochautomatisierter Fahrzeuge. Am Projekt PEGASUS sind 17 Einrichtungen aus Wirtschaft und Wissenschaft beteiligt . Das Projekt startete im Januar 2016, hat ein Projektvolumen von ca. 34,5 Mio. Euro und eine Laufzeit von 46 Monaten.}
}
S. Lapoehn, M. Dziennus, A. Schieben, F. Utesch, T. Hesse, F. Köster, M. Dotzauer, und K. Johann, Interaction design for nomadic devices in highly automated vehicles.
@misc{dlr103550, month = {September},
title = {Interaction design for nomadic devices in highly automated vehicles},
author = {Stephan Lapoehn and Marc Dziennus and Anna Schieben and Fabian Utesch and Tobias Hesse and Frank K{\"o}ster and Mandy Dotzauer and Kelsch Johann},
year = {2016},
journal = {Mensch und Computer 2016 Proceedings},
keywords = {automated driving, nomadic device, takeover, transition},
url = {http://elib.dlr.de/103550/},
abstract = {Following the roadmaps of (inter)national committees, highly automated driving will be available in the next decade in production vehicles. This technology allows the driver to do some other tasks while driving and to remain only as a fallback in situations the automation is not capable to handle. This study tested if nomadic devices, that drivers might use while driving highly automated, can be integrated to support the driver in taking over control when requested. 33 drivers participated in a simulator study and drove in a highly automated vehicle on a motorway. The results showed that the takeover performance of drivers improve if the takeover request is displayed additionally on the nomadic device. Therefore, the integration of additional interfaces such as smartphones into a holistic interaction concept may be a key aspect for designing a secure and comfortable takeover process.}
}
S. Knake-Langhorst, K. Gimm, T. Frankiewicz, und F. Köster, "Test Site AIM -- Toolbox and Enabler for Applied Research and Development in Traffic and Mobility" in Proc. Moving Forward: Innovative Solutions for Tomorrow's Mobility (6th European Transport Research Conference), 2016.
@inproceedings{dlr98594, booktitle = {Moving Forward: Innovative Solutions for Tomorrow's Mobility (6th European Transport Research Conference)},
month = {April},
title = {Test Site AIM {--} Toolbox and Enabler for Applied Research and Development in Traffic and Mobility},
author = {Sascha Knake-Langhorst and Kay Gimm and Tobias Frankiewicz and Frank K{\"o}ster},
year = {2016},
keywords = {intelligent mobility services; test site; situation assessment; V2X communications; cooperative systems},
url = {http://elib.dlr.de/98594/},
abstract = {The Application Platform for Intelligent Mobility (AIM) is a test site for research and development in the domain of intelligent mobility services, which resides in the city of Braunschweig and in parts of the circumjacent regions. The test site, which was set into operation in 2014, contains powerful instruments for simulating, measuring and manipulating microscopic and macroscopic aspects of traffic and mobility. Thus, AIM can serve as platform for research and development projects with high systemic and technical demands. For this purpose, AIM contains simulation environments, specific test tracks and {--} above all {--} several service platforms in the field. The manuscript gives a detailed inside view on two of the most sophisticated services: The AIM Research Intersection is an instrument for detection and assessment of traffic behavior in a complex intersection under real-time conditions. The AIM Reference Track provides V2X functionality for long-term operation in the scale of an urban environment. For both services field applications are depicted to demonstrate the opportunities for individual usage. In addition, AIM services can be seen as relevant components of a toolbox for research and development in the field of applied mobility services. That means that services can be combined to generate multiple options for further applications as additional value apart from their particular task. The manuscript exemplarily outlines a combination of the aforementioned services to bring up the opportunity of infrastructural supported cooperative driver assistance systems. The manuscript ends with a sum-up and an outlook on future works and the integration in the further development outline of AIM.}
}
A. Richter, M. Scholz, H. Friedl, T. Ruppert, und F. Köster, "Challenges and experiences in using heterogeneous, geo-referenced data for automatic creation of driving simulator environments" SIMULATION, vol. 92, iss. 5.
doi: 10.1177/0037549716641201
@article{doi:10.1177/0037549716641201,
author = {Andreas Richter and Michael Scholz and Hartmut Friedl and Thomas Ruppert and Frank K{\"o}ster},
title ={Challenges and experiences in using heterogeneous, geo-referenced data for automatic creation of driving simulator environments},
journal = {SIMULATION},
volume = {92},
number = {5},
pages = {437-446},
year = {2016},
doi = {10.1177/0037549716641201},
URL = { https://doi.org/10.1177/0037549716641201},
eprint = { https://doi.org/10.1177/0037549716641201},
abstract = { For the development of advanced driving assistance and automation systems the simulation plays an important role. Urban areas get increasing emphasis, especially in the context of future Car2X-communication. This article describes an approach developed in the project Virtual World. Its goal is to model such virtual three-dimensional (3D) environments and logical road descriptions automatically based on a tool chain from heterogeneous geographic datasets (e.g., cadastral data, road surveying, aerial pictures, and crowd-sourced data). As proof of concept, the urban area of Braunschweig, Germany, was chosen. The article focuses on the generation of a 3D city model with corresponding road network description suitable for driving and traffic simulations as used in research and industry. The article gives technical descriptions of the major work steps and discusses issues regarding the availability of data. It concludes with the current project outcome and further development in the project. }
}
P. P. Fouopi, G. Srinivas, S. Knake-Langhorst, und F. Köster, "Object Detection Based on Deep Learning and Context Information" in Proc. New Challenges in Neural Computation and Machine Learning, 2016.
@inproceedings{dlr112764, booktitle = {New Challenges in Neural Computation and Machine Learning},
editor = {Thomas Villmann and Frank-Michael Schleif},
title = {Object Detection Based on Deep Learning and Context Information},
author = {Paulin Pekezou Fouopi and Gurucharan Srinivas and Sascha Knake-Langhorst and Frank K{\"o}ster},
year = {2016},
journal = {Machine Learning reports},
keywords = {Object Detection, Deep Learning, Convolutional Neural Networks, Context Information, Semantic Models, Bayesian Models},
url = {http://elib.dlr.de/112764/},
abstract = {In order to avoid collision with other traffic participants automated driving vehicles need to understand the scene around the ego-vehicle. Object detection as part of scene understanding remains a challenging task due to the highly variable object appearances. Object appearances can vary according to position, occlusion, illumination, etc. In this work we propose a combination of convolutional neural networks and context information to improve object detection. Context information and deep learning architectures, which are relevant for object detection, are chosen. Different approaches for integrating context information into the convolutional neural networt are discussed. The combined classifier is trained and evaluated on real scene data.}
A. Richter, M. Fischer, T. Frankiewicz, L. Schnieder, und F. Köster, "Reducing the gap between simulated and real life environments by introducing high-precision data" in Proc. Driving Simulator Conference 2015 Europe, 2015.
@inproceedings{dlr98290, booktitle = {Driving Simulator Conference 2015 Europe},
editor = {Heinrich B{\"u}lthoff and Kemeny Andras and Prettp Paolo},
month = {September},
title = {Reducing the gap between simulated and real life environments by introducing high-precision data},
author = {Andreas Richter and Martin Fischer and Tobias Frankiewicz and Lars Schnieder and Frank K{\"o}ster},
year = {2015},
pages = {227--228},
keywords = {simulation based testing, virtual environment design, high-precision data, urban reference track},
url = {http://elib.dlr.de/98290/},
abstract = {The Institute of Transportation Systems of the German Aerospace Center recently started operating a large-scale research facility called Application Platform for Intelligent Mobility (AIM) to support the development and evaluation of Intelligent Transport Systems and mobility applications in the urban area of Braunschweig, Germany. The overarching goals are to improve safety for all traffic participants, to increase efficiency of traffic flows, and to protect resources. An important part of this new research facility is to provide a reference track on a public road surrounding the downtown, which will be equipped with ITS Roadside Stations for Vehicle-to-X (V2X) communication and additional sensors (e.g. cameras) for comprehensive data collection. Also communication to a traffic management centre and distribution of data to vulnerable road users and passengers via one of the regular WLAN standards is envisaged. One important purpose of the reference track is the development and efficient field operational test of ITS applications that use V2X communication. Before testing new applications or algorithms in a realistic environment it is necessary to evaluate them in a simulation, first. AIM will support this development step by providing a virtual counterpart to the reference track. A large part of Braunschweig is digitally represented with the help of a GIS database developed by a tool chain called SimWorld Urban. A virtual landscape (as a 3D model) and a logical road description (using the de facto standard OpenDRIVE) are automatically generated out of real world data (like cadastral plans, road measurement, aerial photographs, navigation data, etc.). By providing a higher level of reality the currently existing gap between simulation and test trial results will be significantly reduced and therefore significantly lowers the risk of conducting potentially expensive field operational tests with immature applications. The paper will explain the concept of this approach and its challenges.}
}
L. Schnieder und F. Köster, "Assistenz und Automation am Übergang zwischen individueller und kollektiver Mobilität" Internationales Verkehrswesen, vol. 67, iss. 3.
@article{dlr98106, volume = {67},
number = {3},
month = {September},
author = {Lars Schnieder and Frank K{\"o}ster},
editor = {Kay Axhausen and Hartmut Fricke and Sebastian Kummer and Barbara Lenz and Knut Ringat},
title = {Assistenz und Automation am {\"U}bergang zwischen individueller und kollektiver Mobilit{\"a}t},
publisher = {DVV Media Group GmbH},
year = {2015},
journal = {Internationales Verkehrswesen},
pages = {96--99},
keywords = {Verkehrsautomatisierung, Fahrzeugautomatisierung, Intermodalit{\"a}t, {\"O}PNV},
url = {http://elib.dlr.de/98106/},
abstract = {Vorhandene Verkehrsinfrastrukturen sto{\ss}en zunehmend an ihre Kapazit{\"a}tsgrenzen. Der Bau weiterer Verkehrsfl{\"a}chen ist meist weder r{\"a}umlich noch finanziell realisierbar. Alternative Mobilit{\"a}tsmodelle spielen folglich in Ballungsr{\"a}umen eine zunehmend gr{\"o}{\ss}ere Rolle. F{\"u}r junge Menschen ist das Konzept {"`}Nutzen statt Besitzen{"'} eine realistische Option zur Befriedigung ihrer Mobilit{\"a}tsbed{\"u}rfnisse. Die Verkn{\"u}pfung individueller und kollektiver Mobilit{\"a}tsangebote ist hierbei ein wesentliches Element. Entscheidend f{\"u}r den Erfolg solcher Angebote ist, dass die Nutzer ihre Verkehrsmittelwahl auf der Basis der vor Ort vorhandenen Mobilit{\"a}tsoptionen je nach Reisezweck und Verf{\"u}gbarkeit flexibel optimieren k{\"o}nnen.}
}
B. Schonlau, S. Grimm, F. Köster, und T. Frankiewicz, "AIM-Testfeld für kooperative Funktionen" ATZ Automobiltechnische Zeitschrift, vol. 05.
@article{dlr96540, volume = {05},
month = {Mai},
author = {Benedikt Schonlau and Stephan Grimm and Frank K{\"o}ster and Tobias Frankiewicz},
title = {AIM-Testfeld f{\"u}r kooperative Funktionen},
publisher = {Springer Vieweg},
journal = {ATZ Automobiltechnische Zeitschrift},
pages = {54--58},
year = {2015},
keywords = {Vehicle-to-X Kommunikation, V2X Car2X, kooperative Fahrerassistenzsysteme},
url = {http://elib.dlr.de/96540/},
abstract = {Fahrzeughersteller, Zulieferer und Forschungseinrichtungen entwickeln zurzeit Funktionen, die standardisierte Nachrichten zwischen Fahrzeugen und Verkehrsinfrastrukturelementen austauschen, um Unf{\"a}lle zu vermeiden oder Unfallschweren zu mindern. Die Kommunikation erfolgt {\"u}ber Wireless LAN Hardware mit einem speziell auf die Fahrzeug-Fahrzeug- und Fahrzeug-Infrastruktur-Kommunikation (V2X-Kommunikation) angepassten Kommunikationsprotokoll. Das Kommunikationsprotokoll wurde von der IEEE im Standard 802.11p weltweit einheitlich standardisiert. Die f{\"u}r die Kommunikation notwendigen Anwendungsnachrichten wurden vom Car to Car Communication Consortium f{\"u}r die europ{\"a}ische Anwendung standardisiert. M{\"o}gliche Funktionen sind zum Beispiel Warnungen vor Baustellen oder Gefahrenstellen, Ampelassistenten, die den Fahrer beim Erreichen von Lichtsignalanlagen unterst{\"u}tzen oder in einer sp{\"a}teren Generation Notbremsassistenten, die das {\"u}berfahren einer roten Ampel verhindern. Diese kooperativen Sicherheitsfunktionen stellen Anforderungen an neue Testinfrastrukturen. Um die Funktionen hinreichend testen zu k{\"o}nnen, wird eine in den flie{\ss}enden Verkehr eingebettete Testumgebung ben{\"o}tigt, wie sie das Anwendungsfeld intelligente Mobilit{\"a}t (AIM) darstellt.}
}
S. Knake-Langhorst, K. Gimm, und F. Köster, "AIM Research Intersection - Infrastructure for research on interacting urban traffic" in Proc. 27th ICTCT Workshop, 2015.
@inproceedings{dlr95265, booktitle = {27th ICTCT Workshop},
title = {AIM Research Intersection - Infrastructure for research on interacting urban traffic},
author = {Sascha Knake-Langhorst and Kay Gimm and Frank K{\"o}ster},
year = {2015},
keywords = {situation detection, intersection safety, severity of traffic conflicts at intersections, safety indicators, surrogate safety measures, safety performance indicators, collision risk assessment, threat assessment measure, crash proximity measure},
url = {http://elib.dlr.de/95265/}
}
E. Böde, H. Daembkes, W. Damm, F. Griebel, F. Köster, K. Lemmer, A. Lüdtke, J. Niehaus, und T. Peikenkamp, SafeTRANS: Safety, Testen und Entwicklungsprozesse hochautomatisierter SystemeExpert Verlag.
@incollection{dlr96889, volume = {137},
author = {Eckard B{\"o}de and Heinrich Daembkes and Werner Damm and Franziska Griebel and Frank K{\"o}ster and Karsten Lemmer and Andreas L{\"u}dtke and J{\"u}rgen Niehaus and Thomas Peikenkamp},
series = {Haus der Technik},
editor = {Werner Klaffke},
title = {SafeTRANS: Safety, Testen und Entwicklungsprozesse hochautomatisierter Systeme},
publisher = {Expert Verlag},
year = {2015},
journal = {Fahrerassistenz und Aktive Sicherheit},
pages = {184--200},
keywords = {Hochautomatisierte Systeme},
url = {http://elib.dlr.de/96889/},
abstract = {SafeTRANS ist ein gemeinn{\"u}tziger deutscher Verein, der sich insbesondere zum Ziel gesetzt hat, Prozesse, Methoden und Werkzeuge zu erforschen, die die Entwicklung sicherer Embedded Systems in der Verkehrstechnik zu verbessern. Im Januar 2015 wurde dazu ein Arbeitskreis Hochautomatisierte Systeme: Safety, Testen und Entwicklungsprozesse gegr{\"u}ndet. Hierin wollen Teilnehmer aus unterschiedlichen Bereichen der Verkehrstechnik zusammenarbeiten, um gemeinsame Ans{\"a}tze f{\"u}r die Entwicklung und den Test von hochautomatisierten sicherheitskritischen Systemen zu erarbeiten. Als ein erster gemeinsamer Arbeitspunkt wurde die Definition eines interperabelen Umweltmodels f{\"u}r die Umgebung der mobilen Plattform identifiziert. Dieses {\"U}berblickspaper stellt kurz den Verein SafeTRANS und dessen Arbeitskreis dar und gibt dann einen {\"U}berblick {\"u}ber die Resultate einschl{\"a}giger durch SafeTRANS initiierter Projekte zu Methoden der Modellierung und Absicherung der Mensch-Assistenzsystem-Interaktion und er Sicherheit von Assistenzsystemen.}
}
S. Lapoehn, A. Schieben, T. Hesse, J. Schindler, und F. Köster, "Concept of Controlling the Usage of Nomadic Devices in Highly-Automated Vehicles" IET Intelligent Transport Systems.
@article{dlr95262, title = {Concept of Controlling the Usage of Nomadic Devices in Highly-Automated Vehicles},
author = {Stephan Lapoehn and Anna Schieben and Tobias Hesse and Julian Schindler and Frank K{\"o}ster},
publisher = {IET},
year = {2015},
journal = {IET Intelligent Transport Systems},
pages = {599--605},
keywords = {nomadic device, automated driving, advanced driver assistance systems},
url = {http://elib.dlr.de/95262/},
abstract = {Today, the automobile industry and several research institutes develop automated vehicles for several driving applications. With increasing capabilities of automation the driver can be more and more dispensed from the driving task and might want to use his nomadic devices to get entertained, read the news or do office work while driving. However, in some complex driving situations (like road works, freeway exit ramps or lane closure due to car accidents) the automation still needs to safely hand over the control to the driver. These situations require a lot of attention by the driver who must not be tempted to ignore the warnings of the assistance system and to continue any task on the nomadic device until a critical situation originates. This paper describes a method to link nomadic devices to vehicles to support a safe usage during highly automated driving and a first approach to ensure a safe transition between different automation modes. Therefore, the automation system is connected to the nomadic device in the vehicle and has the ability to actively control the content on the screen. The proof of concept is demonstrated in a research vehicle that drives on a simulated motorway.}
}
T. Frankiewicz, F. Köster, S. Grimm, D. Hermann, und B. Schonlau, "Nutzung des Testfeldes AIM für die Absicherung von kooperativen Sicherheitsfunktionen" in Proc. AAET - Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme für Transportmittel, 2015.
@inproceedings{dlr94479, booktitle = {AAET - Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme f{\"u}r Transportmittel},
month = {Februar},
title = {Nutzung des Testfeldes AIM f{\"u}r die Absicherung von kooperativen Sicherheitsfunktionen},
author = {Tobias Frankiewicz and Frank K{\"o}ster and Stephan Grimm and Daniel Hermann and Benedikt Schonlau},
year = {2015},
pages = {192--207},
keywords = {Testfeld AIM, V2X Kommunikation, Car2Car, Car2X, Car2I, Feldtest, Field Operational Test},
url = {http://elib.dlr.de/94479/},
abstract = {Im Rahmen der Standardisierungsaktivit{\"a}ten des Car2Car Communication Consortium arbeiten derzeit verschiedene OEM, Zulieferer und wissenschaftliche Institute an der Weiterentwicklung von V2X-Funktionen (Vehicle-to-Vehicle bzw. Vehicle-to-Infrastructure-Funktionen), wie zum Beispiel Warnung vor Einsatzfahrzeugen, Warnung vor Baustellensperranh{\"a}ngern oder Gr{\"u}nlichtbevorrechtigungen an Lichtsignalanlagen. Die Herausforderung beim Testen solcher V2X-Funktionen liegt in der Komplexit{\"a}t des Systems und der Anzahl der beteiligten Komponenten sowohl im Fahrzeug als auch in der Infrastruktur. So sind beispielsweise Sende- oder Empfangskomponenten unterschiedlicher Hersteller und Standards im Einsatz. Dar{\"u}ber hinaus sind {\"u}blicherweise auf der Infrastrukturseite sehr heterogene Architekturen und Backendstrukturen installiert, sodass einer Vereinheitlichung und Standardisierung der Testkomponenten eine sehr hohe Bedeutung zukommt, um die Systeme skalierbar zu entwickeln. Eine Erprobung und Absicherung dieser Funktionen erfordert sehr hohen Aufwand, da es nicht mehr ausreicht, die Fahrzeuge einzeln zu testen, sondern das Zusammenspiel mehrerer Fahrzeuge und der beteiligten Infrastruktur getestet werden muss. Die zus{\"a}tzliche Herausforderung besteht darin, dass die Funktionen auch hersteller{\"u}bergreifend funktionieren m{\"u}ssen und in der Standardisierung nur der sendeseitige Funktionsumfang beschrieben ist. Eine M{\"o}glichkeit zur Reduzierung des Aufwandes liegt in der Nutzung des Testfeldes Anwendungsplattform Intelligente Mobilit{\"a}t (AIM) in Braunschweig, welches vom DLR betrieben wird. Im Testfeld AIM wird die real vorhandene Infrastruktur, z.B. Lichtsignalanlagen (LSA) und Road Side Units (RSU) genutzt, um beispielsweise zu testen, ob die Sende- und Empfangsseite des Lichtsignalphasenassistenten fehlerfrei funktioniert. Es k{\"o}nnen weiterhin reale Sende- und Empfangsfahrzeuge im Testfeld bewegt werden und {\"u}ber die im Testfeld befindlichen RSUs k{\"o}nnen die Nachrichten, welche zwischen den Fahrzeugen verschickt werden, unabh{\"a}ngig aufgezeichnet und danach ausgewertet werden. Durch die Nutzung des Testfeldes AIM und dessen Prozesse l{\"a}sst sich der Testaufwand verringern sowie die Testtiefe erh{\"o}hen, da zus{\"a}tzlich zu den zu testenden fahrzeugseitigen V2X-Funktionen auch eine infrastrukturseitige Prozessierung und Bewertung der Daten stattfindet. Die hier eingesetzten infrastrukturseitigen Komponenten des kooperativen Testfeldes AIM bestehen im Wesentlichen aus drei Modulen: 1.) Der V2X Referenzstrecke, einer Anordnung von 35 RSUs auf dem inneren Ring der Stadt Braunschweig, mit denen internationale Standards der V2X Kommunikation sowie eigene Protokolle entwickelt und getestet werden k{\"o}nnen 2.) Einer Applikationsschicht auf den RSUs, die eine lokale Datenaufbereitung der lokal zur Verf{\"u}gung stehenden Daten betreibt und aus der infrastrukturseitige Anteile der kooperativen Assistenz bedient werden 3.) Einer {\"u}bergeordneten Schicht, in der in quasi-Echtzeit fahrzeug- und infrastrukturseitige Daten prozessiert werden und die zur Entwicklung und Test von lokalen und zentralen Services dient und auf der Prozesse zur Datenerhebung und Qualit{\"a}tssicherung laufen. Im vorliegenden Artikel werden die Architektur und Prozesslandschaft der drei Module und deren Zusammenspiel im Rahmen der Entwicklung der kooperativen Assistenz erl{\"a}utert. Neben der Datenaufbereitung f{\"u}r die fahrzeugseitige Assistenz wird dabei auch das Verfahren erl{\"a}utert, mit dem im Testfeld AIM in Braunschweig teilautomatisiert V2X Qualit{\"a}tsdaten zur technischen Validierung der Strecke erhoben werden.}
}
S. Knake-Langhorst, K. Gimm, und F. Köster, "AIM Forschungskreuzung - Baustein für den Aufbau von kooperativer Fahrerassistenz und Automation" in Proc. 16. Symposium Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme für Transportmittel (AAET), 2015.
@inproceedings{dlr95264, booktitle = {16. Symposium Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme f{\"u}r Transportmittel (AAET)},
title = {AIM Forschungskreuzung - Baustein f{\"u}r den Aufbau von kooperativer Fahrerassistenz und Automation},
author = {Sascha Knake-Langhorst and Kay Gimm and Frank K{\"o}ster},
year = {2015},
pages = {117--136},
keywords = {Situationserfassung, kritische Verkehrssituationen, Metriken},
url = {http://elib.dlr.de/95264/}
}
K. Ihme, F. Köster, und M. Jipp, "Experimentelle Untersuchungen zur Messung von Emotionen im Verkehr" in Proc. DLR Next Generation Forum 2015, 2015.
@inproceedings{dlr100957, booktitle = {DLR Next Generation Forum 2015},
month = {Dezember},
title = {Experimentelle Untersuchungen zur Messung von Emotionen im Verkehr},
author = {Klas Ihme and Frank K{\"o}ster and Meike Jipp},
year = {2015},
journal = {Tagungsband Next Generation Forum 2015},
keywords = {Emotion, Emotionserkennung, Nutzerzustand, Physiologie},
url = {http://elib.dlr.de/100957/}
}
J. Kelsch, M. Dziennus, und F. Köster, "Cooperative Lane Change Assistant: Background, Implementation \& Evaluation." in Proc. AAET 2015, 2015.
@inproceedings{dlr95232, month = {Februar},
author = {Johann Kelsch and Marc Dziennus and Frank K{\"o}ster},
booktitle = {AAET 2015},
title = {Cooperative Lane Change Assistant: Background, Implementation \& Evaluation.},
journal = {AAET 2015},
pages = {65--85},
year = {2015},
keywords = {cooperation, HMI, lane change assist},
url = {http://elib.dlr.de/95232/},
abstract = {Drivers can cooperate with automation inside the vehicle as well as with traffic participants and intelligent infrastructure outside the vehicle. For that matter cooperation can be a successful concept for designing driver-automation or rather highly automated traffic systems. EU-Project D3CoS was aiming at related knowledge to develop a cross domain framework for design of cooperative systems. For the automotive domain this knowledge was applied to develop a Cooperative Lane Change Assistant (C-LCA) that supports drivers in dense traffic situations while performing lane changes. In this contribution theoretical background, used methods, implementation of the C-LCA, results of its evaluation and lessons learned are described.}