Kontakt

Prof. Dr. Christoph Lienau

Institut für Physik, AG Ultraschnelle Nano-Optik

Tel.: +49(0)441-798-3485
E-Mail:

www.uno.uni-oldenburg.de/63472.html

Das Highlight

<object classid="clsid:6BF52A52-394A-11D3-B153-00C04F79FAA6" codebase="http://activex.microsoft.com/activex/controls/mplayer/en/nsmp2inf.cab#Version=5,1,52,701" height="255" width="255"><param name="src" value="http://www.uno.uni-oldenburg.de/download/sqm_172+CT_xvid.avi" /><param name="url" value="http://www.uno.uni-oldenburg.de/download/sqm_172+CT_xvid.avi" /><param name="width" value="255" /><param name="height" value="255" /><param name="isarray" value="true" /><param name="isArray" value="true" /><embed type="application/x-mplayer2" src="http://www.uno.uni-oldenburg.de/download/sqm_172+CT_xvid.avi" isarray="true" height="255" width="255" /></object>

Umwandlung von Licht in Strom in organischen Solarzellen in Echtzeit

Wackeln hilft: Umwandlung von Licht in Strom in organischen Solarzellen erstmals in Echtzeit gefilmt

„Science“ veröffentlicht Beitrag zur organischen Photovoltaik

Oldenburg. Organische Solarzellen könnten zu einer der Schlüsseltechnologien unseres Jahrhunderts werden. Mit hoher Effizienz verwandeln sie Licht in Strom. Die dabei im Inneren der Solarzelle ablaufenden Prozesse sind jedoch so komplex, dass sie sich bislang einer direkten wissenschaftlichen Beobachtung entzogen haben. Jetzt ist es Wissenschaftlern um den Oldenburger Physiker Prof. Dr. Christoph Lienau erstmals gelungen, die Licht-Strom-Wandlung in einer organischen Solarzelle in Echtzeit zu filmen. In dem heute von dem renommierten Wissenschaftsmagazin „Science“ publizierten Bericht erläutert das Forscherteam aus Oldenburg, Mailand und Modena (Italien), wie die Licht-Stromwandlung, ein lichtinduzierter Elektronentransfer, in einer organischen Solarzelle im Detail abläuft. Sie zeigen: Die Quantenmechanik dieses Prozesses – speziell die wellenförmige Natur der Elektronen und ihre Kopplung an die umgebenden Kerne – ist von entscheidender Bedeutung.

Organische Solarzellen nutzen Nanomaterialien aus Polymeren und aus Fullerenen, um das Sonnenlicht in Strom zu verwandeln. Sie sind preiswert, leicht, flexibel und lassen sich farblich beliebig anpassen. Die konjugierten Polymere sind lange Ketten von Kohlenstoffatomen und fungieren bei der Licht-Strom-Wandlung als Lichtabsorber. Bisher hatten alle Experimente darauf hingedeutet, dass der Strom erzeugt wird, indem Elektronenteilchen von den Polymeren auf die umgebenden Fullerene – kugelförmige Moleküle aus Kohlenstoffatomen – springen.

„Unsere ersten Experimente haben uns sehr überrascht“, sagt Lienau. Die Oldenburger Physikerin Sarah Falke setzte zusammen mit Kooperationspartnern um Prof. Dr. Giulio Cerullo aus Mailand extrem kurze Lichtimpulse im Femtosekundenbereich ein – also mit einer Dauer von wenigen Milliardstel einer Millionstel Sekunde – , um die Polymerschicht in einer organischen Zelle zu beleuchten. Dabei stellten sie fest: Die Lichtimpulse regen nicht nur die Atomkerne zu Schwingungen an, sondern bewirken auch, dass die Elektronen sich wie Wellen verhalten, die zwischen dem Polymer und dem Fulleren hin und her pendeln. Lienau: „Das hatten wir nicht erwartet, denn in organischen Zellen ist die Schnittstelle zwischen Polymeren und Fullerenen äußerst komplex, und beide Komponenten sind nicht durch eine Atombindung verbunden.“

Die Wissenschaftler baten ihre langjährigen Forschungspartner Prof. Dr. Elisa Molinari und Dr. Carlo Andrea Rozzi vom Istituto Nanoscienze des Nationalen Forschungsrat CNR und der Universität von Modena und Reggio Emilia um Unterstützung. Ihnen gelang es, die zeitliche Entwicklung der Elektronen und der Atomkerne zu filmen – also das System abzubilden, das für die experimentell nachgewiesenen Schwingungen verantwortlich ist. „Unsere Berechnungen zeigen, dass die konzertierte Bewegung der Atomkerne ganz wichtig für einen effizienten Ladungstransfer ist“, erläutert Molinari. „Sie müssen wackeln, damit der Strom fließt.“

Ob die neuen Ergebnisse schnell zu verbesserten Solarzellen führen, mögen die Wissenschaftler noch nicht voraussagen. „Aber die Ergebnisse liefern eindrucksvolle, neue Einblicke in einen der grundlegenden Prozesse der organischen Photovoltaik. Wir konnten zeigen, dass anscheinend auch in organischen Zellen Phänomene auftreten, wie sie die Natur bei der Photosynthese hervorgebracht hat“, sagt Lienau.

Aktuelle Studien legten nahe, dass die Quantenkohärenz für die Photosynthese eine zentrale Rolle spielen dürfte. Die Forschungsergebnisse der deutschen und italienischen Wissenschaftler liefern nun den Nachweis für ähnliche Phänomene bei der Funktion von Photovoltaik-Anlagen: „Ein konzeptioneller Fortschritt, der in das Design künftiger künstlicher Lichtsammelsysteme und Solarzellen einfließen wird“, ist sich Lienau sicher.

Nachzulesen bei:

Sarah Maria Falke, Carlo Andrea Rozzi, Daniele Brida, Margherita Maiuri, Michele Amato, Ephraim Sommer, Antonietta De Sio, Angel Rubio, Giulio Cerullo, Elisa Molinari and Christoph Lienau (2014) „Coherent ultrafast charge transfer in an organic photovoltaic blend“, Science 344, Nr. 6187, pp. 1001-1005

[02.06.2014]

(Stand: 20.06.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page