Sound classification and SNR prediction
Kontakt
Leitung
Sekretariat
Anschrift (Postanschrift)
Für spezifische Fragen bezüglich eines unserer Forschungsthemen kontaktieren Sie bitte die entsprechenden Personen direkt (siehe Liste der Mitarbeiter)
Sound classification and SNR prediction
Sound classification and SNR prediction
Problem: Automatic classification of the acoustical situation, and fast prediction of the local signal-to-noise ratio (SNR)
Application: VAD for mobile communication, noise suppression for e.g. hearing instruments
Motivation: Humans can easily detect and classify different sound sources, e.g., distinguish between speech and noise. Which features in the acoustic waveform allow for such impressive skills?
Approach: Modeling neurophysiological findings on amplitude modulation processing in the auditory system of mammals yielding spectro-temporal feature patterns. Classification and SNR prediction with artificial neural networks.
Implementation: Narrow-band SNR estimation fed into Wiener Filter like noise reduction algorithm. No assumption about stationarity of the noise and no speech pause detection necessary.
Paper free to download
-
paper_final.dvi Tchorz, J., Kleinschmidt, M., and Kollmeier, B.: 'Noise suppression based on neurophysiologically motivated SNR estimation for robust speech recognition', Proceedings of NIPS 2000, in press 219 KB