Kontakt

Leitung

Prof. Dr. Andrea Hildebrandt

 +49 (0)441 798-4629

 A07 0-062

Sekretariat

Sandra Marienberg (aktuell in Mutterschutz/Elternzeit)
Kontaktieren Sie die Vertretung ab 01.08.2023 unter: sekretariat.psychologie@uol.de

 +49 (0)441 798 -5523

 A07 0-035

Anschrift

Carl von Ossietzky Universität Oldenburg
Fakultät VI - Medizin und Gesundheitswissenschaften
Abt. Psychologische Methodenlehre und Statistik
Dep. für Psychologie
Gebäude A7
Ammerländer Heerstr. 114-118
26129 Oldenburg

Anfahrt und Lageplan

 Anfahrt zur Universität und Campusplan

Dr. Daniel Kristanto

Research Interests

  • Interpretable machine learning in cognitive neuroscience
  • Graph theory in network neuroscience
  • Meta-analyses, structural equation modelling


Academic positions 

Since July 2022

Research Fellow, Joint Research Fellowship between HWK (Hanse-Wissenschaftskolleg) and Faculty of Medicine, Carl von Ossietzky Universität Oldenburg

Since April 2022


Scientific Researcher at the Department of Psychology, Division for Psychological Methods and Statistics, Carl von Ossietzky Universität Oldenburg

09/2021– 02/2022


Postdoctoral Researcher at the Department of Physics, Hong Kong Baptist University

 

Education

09/2018 – 08/2021

 

PhD Student at the Department of Physics, Hong Kong Baptist University

01/2016 – 10/2017


Master of Science at Sirindhorn International Institute of Technology,  Thammasat University, Thailand

09/2011 – 05/2015


Bachelor of Engineering at Gadjah Mada University, Indonesia


Publications

Kristanto, D., Burkhardt, M., Thiel, C. M., Debener, S., Gießing, C., & Hildebrandt, A. (2024). The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis. Neuroscience & Biobehavioral Reviews, 105846. https://doi.org/10.1016/j.neubiorev.2024.105846

Kristanto, D., Gießing, C., Marek, M., Zhou, C., Debener, S., Thiel, C., & Hildebrandt, A. (2023, October). An Extended Active Learning Approach to Multiverse Analysis: Predictions of Latent Variables from Graph Theory Measures of the Human Connectome and Their Direct Replication. In 2023 Guardians Workshop (Guardians) (pp. 1-13). IEEE. https://doi.org/10.48085/J962E0F53

Kristanto, D., Hildebrandt, A., Sommer, W., & Zhou, C. (2023). Cognitive abilities are associated with specific conjunctions of structural and functional neural subnetworks. NeuroImage279, 120304. https://doi.org/10.1016/j.neuroimage.2023.120304

Kristanto, D., Liu, X., Sommer, W., Hildebrandt A., & Zhou, C. (2021). What do neuroanatomical networks reveal about the ontology of human cognitive abilities?. iScience, Volume 25, Issue 8. https://doi.org/10.1016/j.isci.2022.104706

Kristanto, D., Liu, M., Liu, X., Sommer, W., & Zhou, C. (2020). Predicting Reading Ability from Brain Anatomy and Function: From Areas to Connections. NeuroImage, 116966. https://doi.org/10.1016/j.neuroimage.2023.120304

Kristanto, D., & Leephakpreeda, T. (2018). Effective dynamic prediction of air conditions within car cabin via bilateral analyses of theoretical models and artificial neural networks. Journal of Thermal Science and Technology, 13(2), JTST0020-JTST0020. https://doi.org/10.1299/jtst.2018jtst0020

Kristanto, D., & Leephakpreeda, T. (2017). Sensitivity analysis of energy conversion for effective energy consumption, thermal comfort, and air quality within car cabin. Energy Procedia, 138, 552-557. https://doi.org/10.1016/j.egypro.2017.10.158

Kristanto, D., & Leephakpreeda, T. (2017, March). Energy Conversion for Thermal Comfort and Air Quality Within Car Cabin. In IOP Conference Series: Materials Science and Engineering (Vol. 187, No. 1, p. 012037). IOP Publishing. https://doi.org/10.1088/1757-899X/187/1/012037

Kristanto, D., Wardhana, A., & Rosita, W. (2016) Comparison of Valve Static Friction Detection Method Based on Graphical Fitting. Journal of Automation, Control, and Intrumentation. Vol. 8, No. 2. https://doi.org/10.5614/joki.2016.8.2.4

Webmaster (Stand: 09.08.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page