Kontakt
Dr. Tino Werner
T +49(0)441 798-3216
E
Sprechstunde: n. V.
Dr. Tino Werner
Wissenschaftlicher Mitarbeiter (Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut Systems Engineering für zukünftige Mobilität)
Lehrkraft für besondere Aufgaben (Carl von Ossietzky Universität Oldenburg, Institut für Mathematik)
Zur Person / Werdegang
Nach seinem Studium der Mathematik mit Nebenfach Wirtschaftswissenschaften an der Carl von Ossietzky Universität hat Tino Werner 2016 bei Prof. Ruckdeschel eine Promotion im Bereich des statistischen Lernens begonnen.
Von Oktober 2019 bis Februar 2022 war er als Postdoktorand an der Universität Oldenburg beschäftigt, von März 2020 bis Dezember 2021 zudem als wissenschaftlicher Mitarbeiter am Forschungsinstitut OFFIS im ehemaligen Bereich Verkehr. Dieser Arbeitsbereich ging zum Januar 2022 in das neu gegründete DLR-Institut Systems Engineering über, wo Tino Werner seitdem als wissenschaftlicher Mitarbeiter tätig ist. An der Universität Oldenburg wechselte er ab März 2022 auf die Position einer Lehrkraft für besondere Aufgaben.
Forschungs- und Arbeitsschwerpunkte
Neben der Lehrtätigkeit an der Universität sowie Projektarbeit zum autonomen Fahren am DLR ist er an Industriebeauftragungen und –kooperationen beteiligt, beispielsweise zu den Themen:
- Statistische Abschätzung des Restrisikos von autonomen Systemen
- Signalklassifikation
- Sensorische Chemie
- Betrugsdetektion in der Versicherung
Seine Forschungsschwerpunkte umfassen dabei insbesondere:
- Robuste Statistik
- Modellselektion
- Faire Modellbewertung
- Rankingprobleme
- Deep Learning
Ausgewählte Publikationen
- Werner, T. (2022). A review on instance ranking problems in statistical learning. Machine Learning, 111(2), 415-463.
- Werner, T. (2022). Asymptotic linear expansion of regularized M-estimators. Annals of the Institute of Statistical Mathematics, 1-28.
- Werner, T. (2022). Elicitability of instance and object ranking. Decision Analysis, 19(2), 123-140.
- Wörmann, J., Bogdoll, D., Bührle, E., Chen, H., Chuo, E. F., Cvejoski, K., ... & Zwicklbauer, S. (2022). Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey. arXiv preprint arXiv:2205.04712.
- Werner, T. (2023). Quantitative robustness of instance ranking problems. Annals of the Institute of Statistical Mathematics, 75(2), 335-368.