# Jeeyi Kwak

 Jeeyi Kwak E-Mail:

### Dissertationsvorhaben

#### Students' competencies in proving and argumentation

Proof plays an important role in mathematics and also in mathematics class. Moreover proof is an important topic of the mathematics curriculum and an essential aspect of mathematical competence. However proof is one of the difficult issues for the students to learn. Recent studies have revealed wide gaps in students' understanding of proofs (e.g. Senk, 1985; Martin & Harel, 1989; Harel & Sowder, 1998).

#### Samples & Research questions

In this research, we collected data of 659 German 7th grade students (8th grade: 528) in 27 classes and 189 Korean 7th grade students (8th grade: 182) in 5 classes with respect to their competencies in argumentation and proofs about geometry and questionnaire on mathematical beliefs. In addition, 22 German teachers and 58 Korean teachers were presented the same questionnaire on mathematical beliefs.

The quantitative research concerns the questions, which competencies students have with respect to proving, and how they perform proofs. Our aims are to analyze the factors (e.g. basic knowledge, methodological knowledge, etc) which could influence the geometrical competence and to identify aspects of geometrical competence of lower secondary students in Korea and Germany. To supplement quantitative research, individual interviews were taken place with the aim of investigating the following questions:

1. What are student's proof practices with 6 geometry items?
2. What is student's methodological knowledge with 4 different arguments for one same question?
3. How do students appreciate the proof in their mathematics learning?

#### The Quantitative results

As the first result, German students perform significantly better on items asking for basic competence. On the other hand, Korean students perform significantly better on argumentation and proofs items. However it has also shown students in both countries have difficulties in proving and justifying.

As the second result, with respect to an achievement test on basic competence and competence in argumentation and proofs about geometry three competence levels were identified. This model could be verified empirically. In this table, the numbers mean the average of students responding correctly to all Items in the corresponding levels. This model has three competence levels as follows:

Competence Level I: Simply use of rules and elementary reason:
In the first competence level, the application of concepts and rules and elementary reason (i.e., procedural knowledge) are located in the foreground. Partly simple arithmetic operations must be accomplished and elementary basic knowledge should be used. Formal mathematical arguing is not required in this level.

Competence Level II: proving and justifying (one-step):
Certain aspects of the declarative knowledge are belonging to the second competence level. The students should find a correct reason of the given geometrical problems and make a note of them appropriately. A flexible application of the concepts and factual knowledge within the range of middle level of geometry is suppositional.

Competence Level III: proving and justifying (several steps):
The third competence level is characterized by original and partially creative problem solving and arguing and justifying. In this level, abilities are expected regarding an adequate notation of arguments and reasons to a proof step as well as meaningful chains of several arguments.

 Competence Level I Elementary problems Competence Level II Argument & Proof (one Step) Competence Level III Argument & Proof (more Steps) 0,00 0,47 0,69 0,71 0,56 0,40 0,24 Korea Germany Korea Germany Korea Germany Lower group 0,30 0,51 0,34 0,22 0,06 0,00 Middle group 0,47 0,72 0,83 0,61 0,37 0,18 Higher group 0,64 0, 85 0,93 0,89 0,76 0,50

Table 1: Percentage of correct solution for 7th grade students

#### References:

Harel, G. & Sowder, L. (1998) Students' proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput & E. Dubinsky (Eds.) Research in Collegiate Mathematics Education III (pp. 234 - 283). Providence, RI; American Mathematical Society
Martin, W.G. & Harel, G. (1989) Proof frames of preservice elementary teachers. Journal for Research in Mathematics Education, 20(1), 41-51
Senk, S.L (1985) How Well Do Students Write Geometry Proofs. Math. Teach. v. 78(6) p. 448-56.

### Veröffentlichungen

Heinze, A. & Kwak, J. (2001). Mathematical understanding of grade 8 students, Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Utrecht, Netherlands, 2001Vol. 1. p. 398

Heinze, A. und Kwak, J. (2002). Informal Prerequisites for Informal Proofs. Zentralblatt für Didaktik der Mathematik (ZDM) 34 (1), S. 9 - 16.

Kwak, J. & Reiss, K (2002) Different view of Korean and German teachers beliefs about mathematics, Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, Norwich, UK, 2002 Vol. 1.pp.287

Kwak, J., Reiss, K. & Thomas, J. (2002). Leistungen von deutschen Schülerinnen und Schüler der Klass 7 beim Beweisen und Argumentieren (in Koreanisch). Journal of the Korea Society of Mathematical Education, Series E: Communications of Mathematical Education, 13, 265-274

Kwak, J (2003) Beliefs von Schülerinnen und Schülern zum Beweisen, In M. Toepell (Hrsg.), Beiträge zum Mathematikunterricht 2003. Hildesheim: Franzbecker, pp. 377-380

### Tagungen

#### Posterpräsentationen

Heinze, A., Kwak, J., & Köhler, B (2001). Mathematisches Verständnis in der Realschule. Poster auf der Jahrestagung der Gesellschaft für Didaktik der Mathematik, Ludwigsburg, März 2001.

Heinze, A. & Kwak, J. (2001). Mathematical understanding of grade 8 students, Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, July 2001, Utrecht, Netherlands.

#### Vorträge

Kwak, J (2003) Beliefs von Schülerinnen und Schülern zum Beweisen, Vortrag auf der 27. Jahrestagung der Gesellschaft für Didaktik der Mathematik, März 2003, Dortmund.

Kwak, J., Reiss, K. & Thomas, J. (2002). Leistungen von deutschen Schülerinnen und Schüler der Klass 7 beim Beweisen und Argumentieren (in Koreanisch). Korea Society of Mathematical Education, February, 2002

Kwak, J. & Reiss, K (2002) Different view of Korean and German teachers beliefs about mathematics, Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, July, 2002 Norwich, UK

Kwak, J. (2001). Beweisen und Begründen in der Sekundarstufe I: Eine komparative Studie - Korea und Deutschland- Vortrag im Doktorandenkolloquium der Gesellschaft für Didaktik der Mathematik, September 2001, Benediktbeuern.

#### Teilnahme an Tagungen

 05.-09. March 2001 35. Jahrestagung der Gesellschaft für Didaktik der Mathematik (GDM) in Ludwigsburg 12.-17. July 2001 25th Conference of the International Group for the Psychology of Mathematics Education in Utrecht 21.-23. September 2001 Doktorandenkolloquium der Gesellschaft für Didaktik der Mathematik in Benediktbeuern 23.-28. Juni 2002 International Conference: Teaching culture and the quality of learning. The contribution of video-based research to the improvement of education. Monte Verità, Ascona, Schweiz 22.-23. February 2002 28th Conference of Korea Society of Mathematical Education 21.-26. July, 2002 26th Conference of the International Group for the Psychology of Mathematics Education in Norwich 03.-07. March 2003 37. Jahrestagung der Gesellschaft für Didaktik der Mathematik (GDM) in Dortmund 01.-05. March 2004 38. Jahrestagung der Gesellschaft für Didaktik der Mathematik (GDM) in Augsburg

### Zur Person

 Persönliche Angaben Geburtsdatum: 25.05.1974 Geburtsort: Chonju, South Korea Familienstand: Married Schulbildung 1990 - 1993 Kijun girls high school Studium 1993 - 1998 Chonbuk National University (B.A. in Mathematics) 1998 - 2000 Chonbuk National University (M.A. in Mathematics) 2001 - now Georg-Christoph-Lichtenberg-Stipendiatin im Promotionsprogramm "Fachdidaktische Lehr- und Lernforschung - Didaktische Rekonstruktion" an der Carl von Ossietzky Universität Oldenburg
(Stand: 19.01.2024)  |
Zum Seitananfang scrollen Scroll to the top of the page