Thomas Wolgast ist Doktorand der Energieinformatik an der Universität Oldenburg.
Er hat seinen Master der Energietechnik an der Leibniz Universität in Hannover gemacht. Seine Masterarbeit war die Implementierung und der Vergleich von agentenbasierten Spannungshaltungskonzepten in Verteilnetzen.
Thomas nutzt Reinforcement Learning, um den Optimal Power Flow zu approximieren, eines der wichtigsten Optimierungsproblem in der Energiesystemforschung. Ein Schwerpunkt der Arbeit ist das Environment Design, die optimale Repräsentation des Optimal-Power-Flow-Problems als Reinforcement-Learning-Umgebung.
Neugebauer, T.; Wolgast, T.; Nieße, A. Dynamic Inspection Interval Determination for Efficient Distribution Grid Asset-Management. Energies2020, 13, 3875. https://doi.org/10.3390/en13153875
Veith, Eric; Balduin, Stephan; Wenninghoff, Nils; Tröschel, Martin; Fischer, Lars; Nieße, Astrid et al. (2020): Analyzing Power Grid, ICT, and Market Without Domain Knowledge Using Distributed Artificial Intelligence. In:. CYBER 2020, The Fifth International Conference on Cyber-Technologies and Cyber-Systems, S. 86–93.
Wolgast, Thomas (2020): Real-Time Capable Optimal Power Flow With Artificial Neural Networks. Abstracts from the 9th DACH+ Conference on Energy Informatics, Volume 3 Supplement 2, Sierre, Switzerland. 29-30 October 2020. https://doi.org/10.1186/s42162-020-00113-9
Buchholz S, Tiemann PH, Wolgast T, Scheunert A, Gerlach J, Majumdar N, Breitner M, Hofmann L, Nieße A, Weyer H (2021) A sketch of unwanted gaming strategies in flexibility provision for the energy system. In: 16th International Conference on Wirtschaftsinformatik, Pre-Conference Community Workshop Energy Informatics and Electro Mobility ICT
Wolgast, Thomas; Veith, Eric MSP; Nieße, Astrid (2021): Towards Reinforcement Learning for Vulnerability Detection in Power Systems and Markets. In: Proceedings of the Twelfth ACM International Conference on Future Energy Systems. e-Energy '21: The Twelfth ACM International Conference on Future Energy Systems. Virtual Event Italy, 28 06 2021 02 07 2021. New York,NY,United States: Association for Computing Machinery (ACM Digital Library), S. 292–293.
Wolgast, Thomas; Veith, Eric MSP; Nieße, Astrid (2021): Towards reinforcement learning for vulnerability analysis in power-economic systems. In: Energy Informatics 4 (S3). DOI: 10.1186/s42162-021-00181-5 .
Wolgast, Thomas; Ferenz, Stephan; Niese, Astrid (2022): Reactive Power Markets: a Review. In: IEEE Access. DOI: 10.1109/ACCESS.2022.3141235 .
Thomas Wolgast, Nils Wenninghoff, Stephan Balduin, Eric Veith, Bastian Fraune, Torben Woltjen, Astrid Nieße, “Analyse–learning to attack cyber-physical energy systems with intelligent agents,” SoftwareX, Apr. 2023. DOI: 10.1016/j.softx.2023.101484
Thomas Wolgast and Astrid Nieße. Learning the optimal power flow: Environment design matters. Energy and AI, page 100410, August 2024. ISSN 2666-5468. doi: 10.1016/j.egyai.2024.100410