Navigation

Eingeschränkte Erreichbarkeit

Wir haben die Anwesenheiten in Studiendekanat und Geschäftsstelle der Fakultät VI Medizin und Gesundheitswissenschaften aufgrund der Covid-19-Pandemie auf ein notwendiges Minimum reduziert. Sie erreichen uns aber weiterhin per E-Mail oder telefonisch. Bitte haben Sie Verständnis, dass wir ggf. etwas zeitverzögert antworten oder Auskunft geben können. In der Geschäftsstelle ist ein Notbetrieb vor Ort sichergestellt.

Servicedesk - allgemeine Anfragen

+49 (0)441 798-4067

V04 1-126/133

Teamleitung

Dipl. Inf. Volker Thiemann

+49 (0)441 798-4067

V04 1-133

Arzneimittelgesetz (AMG)

Für die Forschung ist das Arzneimittelgesetz insbesondere dann relevant, wenn eine Klinische Prüfung nach der Definition in §4 Absatz 23 durchgeführt wird. Vereinfacht ausgedrückt sind das alle Studien mit Arzneimitteln, die interventionell gestaltet sind, d. h. z. B. eine Randomisierung enthalten oder eine andere Form von Festlegung, die die reine Beobachtung der ärztlichen Praxis oder die Zweckbestimmung des Arzneimittels übersteigt. Bei Fragen dazu berät Sie die Medizinische Ehikkommission.

Für den Bereich Datenmanagement sind insbesondere die Anforderungen der guten klinischen Praxis einzuhalten. Die Dienstleistungen der Servicestelle Forschungsdatenmanagement sind technisch und organisatorisch grundsätzlich so ausgelegt, dass diese Anforderungen erfüllt werden können. Falls unsere IT-Services in klinischen Prüfungen eingesetzt werden sollen, ist eine Beratung durch die Servicestelle zur Festlegung der Prozesse und Verantwortlichkeiten obligatorisch.

Audit Trail

Als Audit Trail bezeichnet man in EDC-Systemen die Aufzeichnung bzw. die Anzeige/Ausgabe von Datenänderungen. Dabei wird mindestens der Zeitpunkt, der Nutzer und bei Änderungen/Löschungen der Grund erfasst und gespeichert. Somit sind alle Veränderungen auf der Ebene einzelner Datenpunkte nachvollziehbar (auditierbar).

Der Audit Trail ist ein wichtiger Bestandteil der Qualitätsmanagement-Prozesse und er wird durch den Anhang 11 des EG-GMP-Leitfadens zu computergestützten Systemen für den Bereich der GCP-konformen Datenverarbeitung zum Standard definiert.

Datenmanagementplan (DMP)

Ein Datenmanagementplan beinhaltet alle relevanten Informationen zu einem Projekt und zu den Aufgaben, die im Verlauf eines Lebenszyklus in Bezug auf die Forschungsdaten anfallen. Durch die Verwendung eines Datenmanagementplans wird die ausreichende Beschreibung der einzelnen Datenmanagementschritte gewährleistet. Außerdem macht der Einsatz eines solchen Plans den Umgang mit den Forschungsdaten transparent, nachvollziehbar und im Hinblick auf die Einhaltung der Vorgaben überprüfbar. In einigen Fällen wird die Erstellung eines oder ggfs. mehrerer Datenmanagementpläne bei der Beantragung neuer Projekte von Seiten des Fördergebers entweder bereits im Rahmen der Antragsstellung oder innerhalb der ersten Projektlaufzeit erwartet.

Die Servicestelle Forschungsdatenmanagement stellt eine Muster-Vorlage für die Erstellung eines Datenmanagementplans bereit. Informationen hierzu finden Sie in unserem Service-Bereich.

Electronic Data Capture (EDC) / Electronic Case Report Form (eCRF)

Der Begriff Electronic Data Capture (EDC) bezeichnet Softwaresysteme, die für die elektronische Erfassung bzw. Erhebung von klinischen Forschungsdaten eingesetzt werden.

EDC-Systeme sind normalerweise webbasiert und ersetzen papierbasierte Case Report Forms (CRFs) durch entsprechende elektronische Darstellungen (eCRFs). EDC Software beinhaltet neben den Eingabemasken in der Regel auch Workflow-Unterstützung in Form von Eingabeprüfungen (Data Entry Checks), Reporting/Statistikmodule, Exportmodule und ähnliches.

Andere Begriffe, die in diesem Umfeld häufig verwendet werden sind Remote Data Entry (RDE) und Clinical Data Management System (CDMS).

FAIR Data

Die FAIR Data Prinzipien sind im Kern schon lange in Richtlinien zur guten wissenschaftlichen Praxis enthalten. Explizit wurde FAIR Data von der Force11 publiziert und wird vor allem im Rahmen der GO FAIR Initiative weiter etabliert. In der deutschen Community bündeln sich die Aktivitäten dazu aktuell im Rahmen der Nationalen Forschungsdateninfrastruktur (NFDI).

Das Apronym FAIR setzt sich aus den folgenden Begriffen zusammen:

F - Findable: Um Daten nutzbar und wiederverwendbar zu machen, muss man sie finden können. Dazu sind maschinenlesbare und für die Suche geeignete Metadaten wichtig.

A - Accessible: Gefundene Daten müssen zugänglich sein. Dies betrifft unter anderem die Kommunikationsprotokolle und auch ggf. das Berechtigungsmanagment

I - Interoperable: Die Meta-/Daten müssen in einer Form repräsentiert sein, die eine Integration mit anderen Daten und Tools erlaubt. Dies betrifft zum Beispiel die Wissensrepräsentation bzgl. Vokabularien, Referenzen, etc.

R - Reusable: Um eine Nachnutzung der Daten zu ermöglichen, müssen beispielsweise geeignete Lizenzen verwendet werden, die Quelle und Verarbeitungsschritte beschrieben sein (Data provenance) und relevante Domänen-/Community-Standards beachtet werden.

Forschungsdaten

Forschungsdaten sind einerseits das Ergebnis von wissenschaftlicher Forschungstätigkeit und stellen andererseits eine wichtige Grundlage für die wissenschaftliche Arbeit dar. Entsprechend der Vielfältigkeit von wissenschaftlicher Forschung umfassen Forschungsdaten sehr unterschiedliche Arten von Messwerten, Labordaten, Bild- oder Tonaufnahmen, Umfragedaten, Proben usw. Laut der von der Deutschen Forschungsgemeinschaft (DFG) veröffentlichten Leitlinien zum Umgang mit Forschungsdaten sollten auch methodische Testverfahren, z.B. Fragebögen, Software und Simulationen, als Forschungsdaten aufgefasst werden, wenn es sich bei diesen um ein zentrales Ergebnis der wissenschaftlichen Tätigkeit handelt.

Gute wissenschaftliche Praxis (GWP)

Wissenschaftliche Redlichkeit und die Beachtung der Grundsätze guter wissenschaftlicher Praxis sind unverzichtbare Voraussetzungen wissenschaftlichen Arbeitens, das Erkenntnisgewinn zum Wohl der Gesellschaft anstrebt.

Die Universität Oldenburg hat dazu die "Ordnung über die Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Carl von Ossietzky Universität" verabschiedet. Die Ordnung und weitere Informationen finden Sie auf den Seiten des Dekanats.

Die aktuelle Fassung des Kodex "Leitlinien zur Sicherung guter wissenschaftlicher Praxis" finden Sie auf den Seiten der DFG.

Die Servicestelle Forschungsdatenmanagement kann Sie insbesondere an den folgenden Punkten bei der Umsetzung der GWP unterstützen:

  • Leitlinie 7: Phasenübergreifende Qualitätssicherung
    Beratung bzgl. fachspezifischer Standards und etablierter Methoden im Bereich Forschungsdatenmanagement, Medizininformatik, Datenschutz, Informationssicherheit, etc.
    Qualitätssicherung durch Gestaltung von Datenmanagementprozessen nach dem Stand der Technik bei der Erhebung, Prozessessierung und Analyse von Forschungsdaten sowie Auswahl, Nutzung, ggf. Entwicklung und Programmierung von Forschungssoftware
  • Leitlinie 8: Akteure, Verantwortlichkeiten und Rollen
    Soweit IT-Dienstleistungen genutzt werden, die von der Servicestelle administriert werden, übernehmen wir dafür für Sie die Pflege der Benutzerrollen. Die damit zusammenhängenden Rechte und Verantwortlichkeiten sind somit zu jedem Zeitpunkt des Forschungsvorhabens transparent.
  • Leitlinie 10: Rechtliche und ethische Rahmenbedingungen, Nutzungsrechte
    Bzgl. der rechtlichen Zulässigkeit, Nutzungslizenzen und der technischen Umsetzung einer Zugänglichmachung von Forschungsdaten und -ergebnissen kann die Servicestelle Sie unterstützen.
  • Leitlinie 11: Methoden und Standards
    Die Servicestelle bietet spezielle Kompetenzen im Bereich Forschungsdatenmanagement, Medizininformatik, Datenschutz, Informationssicherheit und darüber hinaus. Im Sinne der Leitlinie können Sie durch enge Kooperation diese Kompetenzen zum Beispiel bei der Anwendung von Software und der Erhebung von Forschungsdaten für sich nutzen.
  • Leitlinie 12: Dokumentation
    Durch die Nutzung von Datenmanagementplänen und Dokumentations-Tools, sorgen Sie im Sinne der Leitlinie für die notwendigen Informationen über die Forschungsdaten und die Verarbeitungsschritte.
  • Leitlinie 13: Herstellung von öffentlichem Zugang zu Forschungsergebnissen
    In diesem Punkt arbeitet die Servicestelle mit den zentralen Einrichtungen der Universität an Lösungen die FAIRe Veröffentlichung von Forschungsdaten besser zu unterstützen.
  • Leitlinie 16: Vertraulichkeit und Neutralität bei Begutachtungen und Beratungen
    Die Verpflichtungen zur Vertraulichkeit gilt natürlich auch für Beratungen durch die Servicestelle Forschungsdatenmanagement.
  • Leitlinie 17: Archivierung
    Bei der Umsetzung der in der Regel 10-jährigen Aufbewahrungsfrist unterstützen wir Sie gerne.

Identitätsmanagement (Patientenliste, Anonymisierung, Pseudonymisierung, Treuhandhandstelle)

Identitätsmanagement dient in der medizinischen Forschung dazu medizinische Daten (MDAT) entsprechend der Grundsätze der DSGVO (insbesondere Artikel 5 Abs. 1 lit. c und e) datenschutzgerecht verarbeiten zu können. Identitätsmanagement ist nötig, wenn bei der Forschung nicht auf anonyme Daten zurückgegriffen werden kann, wie etwa bei der Zusammenführung von Daten aus verschiedenen Quellen oder bei longitudinalen Daten. Dieses Verfahren wird auch als Record-Linkage bezeichnet. Zu den zentralen Aufgaben des Identitätsmanagements gehören das Führen von Patientenlisten und die Pseudonymisierung.

Patientenliste

In einer Patientenliste werden Personen mit ihren identifizierenden Personendaten (IDAT) erfasst und ihnen ein nichtsprechender Identifikator (PID) zugewiesen (in der Praxis häufig auch Studienpatientennummer o.ä. genannt). Der PID dient beim Transfer von Behandlungs- oder Studiendaten in den Forschungskontext als Identifikator anstelle der IDAT.
Das Identitätsmanagement kann zentral oder dezentral organisiert sein. Das Führen von Patientenlisten kann im Sinne der Datensparsamkeit lokal in einem Forschungsprojekt betrieben werden. Bei größeren Forschungsverbünden mit Daten aus verschiedenen Quellen bietet es sich oft an Patientenliste und Pseudonymisierung über eine zentrale, unabhängige und vertrauenswürdige Stelle betreiben zulassen.

Anonymisierung

Eine Anonymisierung liegt vor, wenn der Personenbezug von Daten derart aufgehoben ist, dass er nicht oder nur unter unverhältnismäßigem Aufwand an Zeit, Kosten und Arbeitskräften wiederhergestellt werden kann. [2]

Pseudonymisierung

Die DSGVO fordert in Artikel 25 Pseudonymisierung , wenn personenidentifizierende Daten verarbeitet werden.  Nach [1] unterscheiden wir verschiedene Klassen von Pseudonymen danach, welcher Personenkreis von Ihnen Kenntnis erhält. Durch mehrstufige Pseudonymisierung kann eine sichere Entkoppelung des Versorgungskontextes, einer Forschungsdatenbank und ggf. daraus abgeleiteter Extrakte erreicht werden. 

Pseudonymisierungsdienst

Sollen medizinische Daten aus verschiedenen Quellen zusammengeführt werden geschieht dies mittels Pseudonymisierung. Hierbei wird einem PID aus dem Identitätsmanagement ein permanentes Pseudonym (PSN) zugeordnet. Die zugehörigen MDAT werden an einem Pseudonymisierungsdienst vorbei oder verschlüsselt durchgeleitet.
Ein Pseudonymisierungsdienst stellt in diesem Kontext eine Softwarelösung dar, welche das automatische Pseudonymisieren von Daten ermöglicht. Diese Systeme bieten in der Regel das automatische Erzeugen, Speichern und Verwalten von Pseudonymen und Zuordnungen von Originalwerten zu Pseudonymen. Es gibt sowohl einfache Desktop-Anwendungen für kleine lokale Forschungsvorhaben als auch komplexe Client-Server-Architekturen für verteilte Forschungsverbünde.

Treuhandstelle / Vertrauenswürdige Stelle

Eine Treuhandstelle dient in der medizinischen Forschung als unabhängige Einrichtung für die Trennung von personenidentifizierenden Daten und medizinischen Daten. Durch eine Treuhandstelle können Forschern Daten ohne einen direkten Personenbezug zur Verfügung gestellt werden, so dass sie trotzdem weiterhin über Pseudonyme verknüpfbar sind.  Treuhandstellen können lokal, verteilt oder zentral betrieben werden. Neben dem Führen einer Patientenliste und der Pseudonymisierung oder Anonymisierung von Daten kann sich eine Treuhandstelle auch mit der Verwaltung von Einverständniserklärungen von Patienten und Probanden befassen.

Für viele dieser Aufgaben können Software-Lösungen zur leichteren Umsetzung angeboten werden. So könnte ein Pseudonymisierungsdienst das systematische und automatische Pseudonymisieren von Daten übernehmen.

Unsere Angebote dazu finden Sie im Service-Bereich. Wir beraten Sie darüber hinaus gerne bei der individuellen Gestaltung der Prozesse in Ihrem Projekt.

  1. Pommerening, K.; Drepper, J.; Helbing, K.; Ganslandt, T. (2014): Leitfaden zum Datenschutz in medizinischen Forschungsprojekten – Generische Lösungen der TMF 2.0, Schriftenreihe der TMF Band 11, MWV, Berlin.
  2. Der Bundesbeauftragte für den Datenschutz und die Informationsfreiheit (2020): Öffentliches Konsultationsverfahren des Bundesbeauftragten für den Datenschutz und die Informationsfreiheit zum Thema: Anonymisierung unter der DSGVO unter besonderer Berücksichtigung der TK-Branche, Bonn

Investigator Initiated Trials (IIT) / Wissenschafts-initiierte (klinische) Studien

Investigator Initiated Trials (IITs) sind klinische Studien oder biomedizinische Forschungsprojekte, bei denen die Verantwortung (i. e. Sponsorschaft nach dem Arzneimittelgesetz) und die Studienleitung bei universitären Einrichtungen liegt. Im Gegensatz dazu werden Zulassungsstudien im Arzneimittel- oder Medizinprodukte-Bereich normalerweise von der (Pharma-)Industrie in Zusammenarbeit mit Contract Research Organizations (CROs) durchgeführt.

Typische Beispiele für IITs sind Therapie-Vergleiche oder Therapie-Optimierungsstudien, für die oft kein kommerzielles aber ein hohes wissenschaftliches Interesse vorhanden ist.

Finanziert werden IITs häufig durch öffentliche Fördermaßnahmen wie z. B. von BMBF oder DFG , durch Stiftungen und teilweise auch durch die Industrie.

Lebenszyklus von Forschungsdaten

Der Lebenszyklus von Forschungsdaten erstreckt sich von der Planung eines Forschungsvorhabens über die Generierung und Analyse von Forschungsdaten bis zur Archivierung und Nutzbarmachung von Forschungsdaten. In dem Lebenszyklus von Forschungsdaten lassen sich verschiedene generische Phasen identifizieren:

  • Planung: Der Startpunkt eines Forschungsvorhabens ist immer eine Forschungsfrage. Zur Beantwortung dieser Frage werden in der evidenzbasierten Forschung Daten benötigt. Hierbei entsteht eine Vielzahl an Aufgaben:
    • Recherche nach existierenden Daten und Datenzugriffsmöglichkeiten
    • Klärung von Datenlizenzfragen
    • Planung von Datenerhebung
    • Planung des Forschungsdatenmanagements, unter anderem:
      • Planung Datenzugriff
      • Planung Datenpublikation
      • Planung Datenarchivierung

    Beim Forschen mit Forschungsdaten bietet es sich an, systematisches Forschungsdatenmanagement zu betreiben, in der Planungsphase einen Datenmanagementplan zu erstellen und diesen während des Forschungsvorhabens kontinuierlich zu pflegen.

  • Datenerhebung: Die Datenerhebung umfasst Aufgaben von der reinen Akquise von existierenden Daten bis zur Erhebung von neuen Daten (z. B. durch Experimente oder Umfragen). Bei der Erhebung neuer Daten können je nach Forschungsvorhaben Softwarewerkzeuge genutzt werden. Dies können EDC-Lösungen wie REDCap oder Umfrage-Server wie SoSci Survey sein. Des Weiteren gehört zur Datenerhebung auch die Erhebung von Metadaten zur Beschreibung der Daten und des Erhebungskontextes und das Verwalten und Speichern von Daten.
  • Analyse/Auswertung: Für die Analyse und Auswertung der Forschungsdaten müssen die Forschungsdaten überprüft, validiert und gegebenenfalls bereinigt werden. Dies stellt eine Schnittstelle zwischen Datenerhebung und Auswertung dar. Im Anschluss können die Forschungsdaten analysiert und interpretiert werden. Die dabei gewonnen Erkenntnisse liegen oft in Form von Analyse-Daten vor und sind ebenfalls Forschungsdaten.
  • Archivierung: Nach Analyse/Auswertung und gegebenenfalls Publikation von wissenschaftlichen Ergebnissen müssen die Forschungsdaten archiviert werden. Die Archivierung sollte bereits in der Planungsphase vorbereitet und in einem Datenmanagementplan dokumentiert sein. Zu den Aufgaben der Archivierung gehören die Auswahl eines Archives und/oder einer Archivierungsmethode, Wahl eines passenden Speicherformates und entsprechende Dokumentation. Des Weiteren kann die Archivierung noch Aufgaben der Datenaufbereitung, wie Anonymisierung von Datensätzen, beinhalten.
  • Zugang/Nachnutzung: Zugang und Nachnutzung zu und von Forschungsdaten richten sich nach den FAIR-Prinzipien. Zur Zugänglichmachung von Forschungsdaten für die wissenschaftliche Nachnutzung gehören die Publikation von Forschungsdaten in einem erreichbaren Forschungsdatenrepository und die Vergabe von Nutzungslizenzen für die Forschungsdaten. Zu Beginn dieser Phase ist auch die rechtliche Frage zu klären, in welcher Form die Forschungsdaten überhaupt zugänglich gemacht werden dürfen. Besonders im Rahmen von medizinischer Forschung sind hier oft datenschutzrechtliche Hürden zu bedenken.

Medizinprodukte / Medizinproduktegesetz (MPG) / Medical Device Regulation (MDR)

Medizinprodukte sind alle einzeln oder miteinander verbunden verwendeten Instrumente, Apparate, Vorrichtungen, Software, Stoffe und Zubereitungen aus Stoffen oder andere Gegenstände einschließlich der vom Hersteller speziell zur Anwendung für diagnostische oder therapeutische Zwecke bestimmten und für ein einwandfreies Funktionieren des Medizinproduktes eingesetzten Software, die vom Hersteller zur Anwendung für Menschen mittels ihrer Funktionen zum Zwecke

  • der Erkennung, Verhütung, Überwachung, Behandlung oder Linderung von Krankheiten,
  • der Erkennung, Überwachung, Behandlung, Linderung oder Kompensierung von Verletzungen oder Behinderungen,
  • der Untersuchung, der Ersetzung oder der Veränderung des anatomischen Aufbaus oder eines physiologischen Vorgangs oder
  • der Empfängnisregelung

zu dienen bestimmt sind und deren bestimmungsgemäße Hauptwirkung im oder am menschlichen Körper weder durch pharmakologisch oder immunologisch wirkende Mittel noch durch Metabolismus erreicht wird, deren Wirkungsweise aber durch solche Mittel unterstützt werden kann. [1]

Zweck des Medizinproduktegesetzes (MPG) ist es, den Verkehr mit Medizinprodukten zu regeln und dadurch für die Sicherheit, Eignung und Leistung der Medizinprodukte sowie die Gesundheit und den erforderlichen Schutz der Patienten, Anwender und Dritter zu sorgen. Das MPG gilt insbesondere für Medizinprodukte und deren Zubehör. Zubehör wird als eigenständiges Medizinprodukt behandelt. Das MPG gilt ebenfalls für das Anwenden, Betreiben und Instandhalten von Produkten, die nicht als Medizinprodukte in Verkehr gebracht wurden, aber mit der Zweckbestimmung eines Medizinproduktes eingesetzt werden.

Weitere spezielle Geltungsbereiche des MPG sind dem Gesetzestext zu entnehmen.

Seit Mai 2017 ist des Weiteren die Medical Device Regulation (MDR) [2] der EU in Kraft getreten, welche den Umgang mit Medizinprodukten auf einem aktuelleren Stand reguliert und spezifiziert. Die verpflichtende Umsetzung der MDR soll aufgrund der Corona-Krise ins Jahr 2021 verschoben werden.

  1. Medizinproduktegesetz in der Fassung der Bekanntmachung vom 7. August 2002 (BGBl. I S. 3146), das zuletzt durch Artikel 83 des Gesetzes vom 20. November 2019 (BGBl. I S. 1626) geändert worden ist.
  2. https://www.johner-institut.de/blog/wp-content/uploads/2020/02/MDR_konsolidiert.html

Nationale Forschungsdateninfrastruktur (NFDI)

Die Nationale Forschungsdateninfrastruktur ist eine Förderinitiative, die unter der Koordination der DFG deutschlandweit ein verlässliches und nachhaltiges Dienste-Portfolio für generische und fachspezifische Bedarfe des Forschungsdatenmanagements entwicklen soll.

Die nationale Forschungsdateninfrastruktur (NFDI) soll die Datenbestände von Wissenschaft und Forschung systematisch erschließen, nachhaltig sichern und zugänglich machen sowie (inter-)national vernetzen. Sie wird in einem aus der Wissenschaft getriebenen Prozess als vernetzte Struktur eigeninitiativ agierender Konsortien aufgebaut werden.

Die Ziele der Förderung von Konsortien sind:

  • Etablierung von Regeln zum standardisierten Umgang mit Daten in enger Rückkoppelung mit der jeweiligen Fachgemeinschaft
  • Erarbeitung von disziplinübergreifenden Metadatenstandards
  • Entwicklung von verlässlichen und interoperablen Maßnahmen für das Datenmanagement und ein auf die Anforderungen der Fachgemeinschaft zugeschnittenes Dienste-Angebot
  • Steigerung der Nachnutzbarkeit bereits vorhandener Daten, auch über die Fächergrenzen hinaus
  • Anbindung und Vernetzung mit Partnern in ausländischen Wissenschaftssystemen, die Kompetenz im Bereich Forschungsdatenmanagement aufweisen.
  • Mitarbeit bei der Entwicklung und Etablierung generischer, konsortienübergreifender Dienste und Standards zum Forschungsdatenmanagement [1]

Gemeinsam mit Kollegen aus dem BIS und den IT-Diensten verfolgt die Servicestelle Forschungsdatenmanagement die Entwicklungen in diesem Bereich und informiert über Angebote und Lösungen.

  1. https://www.dfg.de/foerderung/programme/nfdi/

Personenbezogene Daten

Personenbezogene Daten sind nach Artikel 4 Datenschutzgrundverordnung (DSGVO) alle Informationen, die sich auf eine identifizierte oder identifizierbare Person beziehen.

Gesundheitsdaten in Form von Einzelangaben (z. B. eine Tabelle mit einer Zeile pro Person) sind somit in der Regel personenbezogene Daten. Auch wenn kein direkt identifizierendes Merkmal (z. B. der Name) oder ein Pseudonym (z. B. eine Fallnummer) enthalten ist, kann eine Person noch identifizierbar sein.

Für die Verarbeitung personenbezogener Daten wird eine Rechtsgrundlage (wie z. B. die Einwilligung des Betroffenen) benötigt. Dies ist dann besonders wichtig, wenn Daten für die Forschung verwendet und an Dritte übermittelt werden sollen, die aus anderen Gründen (wie z. B. der medizinischen Versorgung) erhoben wurden.

Bei medizinischen Daten handelt es sich gemäß Artikel 9 der DSGVO regelmäßig um sogenannte "besondere Kategorien personenbezogener Daten".  Insbesondere fallen genetische Daten, biometrische Daten und Gesundheitsdaten darunter. Diese Arten von Daten gelten als besonders sensibel und erfordern daher zusätzliche Maßnahmen.

Gerne berät Sie die Servicestelle Forschungsdatenmanagement zu speziellen Aspekten im Umgang mit medizinischen Forschungsdaten.

Weitere Details und Beratung finden Sie außerdem auf den Seiten der Stabsstelle Datenschutz- und Informationssicherheitsmanagement.

REDCap

REDCap ist eine browserbasierte, metadatengesteuerte EDC-Software und Workflow-Methodik zum Entwerfen und Managen von klinischen und translationalen Forschungsdatenbanken.
REDCap wurde 2004 an der Vanderbilt University implementiert und wird seitdem stetig vom REDCap-Konsortium weiterentwickelt.

Mit der Software lassen sich eCRFs und Online-Umfragen über eine benutzerfreundliche Oberfläche einfach und flexibel erstellen. Die erhobenen Daten können als CSV oder XML oder direkt im Format für diverse Statistik-Tools (SPSS, SAS, R, Stata) exportiert werden. Weiterhin bietet REDCap die Offline-Datenerhebung per App, einen Audit Trail, das Abrufen von Reports und Statistiken, Erweiterbarkeit durch Plugins  u. v. m.
Eine ausführliche Liste der enthaltenen Funktionen ist auf der offiziellen Webseite zu finden: https://projectredcap.org/software/

Zu beachten ist, dass die Software nicht für Studien, die dem Arzneimittelgesetz (AMG) oder dem Medizinproduktegesetz (MPG) unterliegen, validiert ist.

Informationen zu unserem REDCap-Service finden Sie in unserem Service-Bereich.

Software as a Service (SaaS)

Software as a Service ist ein Teilbereich des Cloud Computing. Dieser ist laut dem Bundesamt für Sicherheit in der Informationstechnik (BSI) wie folgt definiert:

Cloud Computing bezeichnet das dynamisch an den Bedarf angepasste Anbieten, Nutzen und Abrechnen von IT-Dienstleistungen über ein Netz. Angebot und Nutzung dieser Dienstleistungen erfolgen dabei ausschließlich über definierte technische Schnittstellen und Protokolle. Die Spannbreite, der im Rahmen von Cloud Computing angebotenen Dienstleistungen umfasst das komplette Spektrum der Informationstechnik und beinhaltet unter anderem Infrastruktur (z. B. Rechenleistung, Speicherplatz), Plattformen und Software. [1]

SaaS befasst sich hierbei mit dem Teilbereich der Bereitstellung von Software als Dienstleistung für den Anwender. Für  den Anwender fällt somit der Betrieb und die grundlegende Administration von IT-Systemen sowie der jeweiligen Anwendung weg. SaaS ermöglicht es dem Anwender sich rein auf die Verwendung der jeweiligen Softwarelösung für ein Vorhaben zu fokussieren.

  1. https://www.bsi.bund.de/DE/Themen/DigitaleGesellschaft/CloudComputing/Grundlagen/Grundlagen_node.html

SoSci Survey

Bei SoSci Survey handelt es sich um ein professionelles browserbasiertes Werkzeug zur Entwicklung und Durchführung von Online-Befragungen. Die Grundlage für SoSci Survey entstand 2003 am Institut für Kommunikationswissenschaft und Medienforschung der LMU München. Seitdem wird SoSci Survey stetig von der SoSci Survey GmbH weiterentwickelt.

SoSci Survey ermöglicht die Erstellung anspruchsvoller Online-Fragebögen, indem u.a. Bilder, Audio- und Videodateien in den Fragebogen eingebunden werden können und über 30 Fragetypen für eine flexible Gestaltung zur Verfügung stehen. Die erhobenen Daten können in diversen Formaten wie etwa CSV, SPSS, Stata, GNU R oder SQL zur Weiterverarbeitung exportiert werden. Weitere Informationen sind auf der offiziellen Homepage zu finden: https://www.soscisurvey.de/

Die Nutzung von SoSci Survey ist für die nicht-kommerzielle Forschung kostenlos. Die Universität Oldenburg stellt hierfür einen eigenen Befragungsserver mit SoSci Survey bereit. Die Servicestelle Forschungsdatenmanagement bietet die Möglichkeit, SoSci Survey an der Universität Oldenburg für eigene Online-Befragungen zu verwenden.

Informationen zu unserem SoSci Survey-Service finden Sie in unserem Service-Bereich.

Standard Operating Procedure (SOP)

Standard Operating Procedures (SOPs) sind verbindlich dokumentierte Arbeitsabläufe bzw. Prozessbeschreibungen. SOPs sind ein wichtiger Bestandteil eines GCP-konformen Qualitätsmanagementsystems.

Zu einem SOP-System gehört dementsprechend u. a. auch ein Rollenmodell und ein Schulungskonzept. Eine SOP sollte genau ihren Zweck und Anwendungsbereich definieren, sowie die relevanten regulatorischen Vorgaben und die durchzuführenden Arbeitsschritte incl. zu erstellender Dokumentation beschreiben.

Häufig werden SOPs durch weitere Arbeitsanweisungen (engl. work instruction) ergänzt, in denen beispielsweise systemspezische Arbeitsschritte detaillierter beschrieben werden ggü. den eher allgemeingültigen Vorgaben einer SOP.

TMF e. V.

Die TMF – Technologie- und Methodenplattform für die vernetzte medizinische Forschung e.V. (kurz: TMF) ist die Dachorganisation für die medizinische Verbundforschung in Deutschland. Sie ist die Plattform für den interdisziplinären Austausch und die projekt- wie standortübergreifende Zusammenarbeit, um gemeinsam die organisatorischen, rechtlich-ethischen und technologischen Probleme der modernen medizinischen Forschung zu identifizieren und zu lösen. Die Lösungen reichen von Gutachten, generischen Konzepten und IT-Anwendungen über Checklisten und Leitfäden bis zu Schulungs- und Beratungsangeboten. Die TMF stellt diese Lösungen frei und öffentlich zur Verfügung. [1]

Die medizinische Fakultät ist Mitglied in der TMF und möchte die Angebote für die Angehörigen der UOL nutzbar machen. Mitarbeiter der Servicestelle nehmen regelmäßig an Arbeitsgruppen-Treffen der TMF teil und stehen Ihnen gerne für Fragen oder zum Aufbau von Kontakten / Kooperationen zur Verfügung.

  1. http://www.tmf-ev.de/Ueber_uns.aspx
Webm0oim6aster (petra.wilt1jpxs@uol.deni) (Stand: 16.06.2020)